1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
|
#ifndef _RHEO_MSG_UTIL_H
#define _RHEO_MSG_UTIL_H
///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
///
/// =========================================================================
//
// utilities for message exchange basic algorithms
// implemented with MPI
//
// author: Pierre.Saramito@imag.fr
//
// date: 17 december 1998
//
# include "rheolef/communicator.h"
namespace rheolef {
// there is a non-standard SGI extension like that:
template <class T1, class T2>
struct select1st : std::unary_function<std::pair<T1,T2>, T1> {
T1 operator() (const std::pair<T1,T2>& x) const { return x.first; }
};
template <class T1, class T2>
struct select2nd : std::unary_function<std::pair<T1,T2>, T2> {
T2 operator() (const std::pair<T1,T2>& x) const { return x.second; }
};
// always true predicate
template <class T>
struct always_true : std::unary_function<T,bool> {
bool operator()(const T& x) const { return true; }
};
// index iterator, simulates array[i] = i
template <class Size, class Distance = std::ptrdiff_t>
class index_iterator : public std::iterator<std::input_iterator_tag, Size, Distance, const Size*, const Size&> {
public:
index_iterator& operator++() { _i++; return *this; }
index_iterator operator++(int) {
index_iterator<Size,Distance> tmp = *this;
_i++;
return tmp;
}
const Size& operator*() const { return _i; }
const Size& operator[](const Size& i) const { return i; }
bool operator==(const index_iterator<Size,Distance>& x) const{
return x._i == _i; }
bool operator!=(const index_iterator<Size,Distance>& x) const{
return !(x._i == _i); }
index_iterator(Size i0 = 0) : _i(i0) {}
protected:
Size _i;
};
// f1(pair x) = x.first
template <class Pair>
struct first_op
: public std::unary_function<Pair,typename Pair::first_type> {
typename std::unary_function<Pair,typename Pair::first_type>::result_type
operator()(const Pair& x) const {
return x.first; }
};
// f2(pair x) = x.second
template <class Pair>
struct second_op
: public std::unary_function<Pair, typename Pair::second_type> {
typename std::unary_function<Pair,typename Pair::second_type>::result_type
operator()(const Pair& x) const {
return x.second; }
};
// pair<const uint, T> and pair<uint, T> are not compatible
// for some C++; so convert it explicitly:
template<class Pair1, class Pair2>
struct pair_identity : public std::unary_function<Pair1, Pair2> {
Pair2 operator()(const Pair1& x) const {
return Pair2(x.first, x.second); }
};
// wrapper iterator class that applies an operator
template <class Iterator, class Operator>
class apply_iterator : public std::iterator_traits<Iterator> {
public:
typedef typename Operator::result_type value_type;
apply_iterator(Iterator i1, Operator op1)
: i(i1), op(op1) {}
apply_iterator& operator++() {
i++; return *this; }
apply_iterator operator++(int) {
apply_iterator t = *this; i++; return t; }
value_type operator*() const { return op(*i); }
bool operator== (apply_iterator<Iterator,Operator> b) const{ return (i == b.i); }
bool operator!= (apply_iterator<Iterator,Operator> b) const{ return (i != b.i); }
protected:
Iterator i;
Operator op;
};
template <class Iterator, class Operator>
inline
apply_iterator<Iterator,Operator>
make_apply_iterator(Iterator i, Operator op) {
return apply_iterator<Iterator,Operator>(i,op);
}
// some c++ cannot convert pair<const I,T> to pair<I,T>:
template <class InputIterator, class OutputIterator>
OutputIterator
msg_pair_copy(InputIterator input, InputIterator last,
OutputIterator result) {
while (input != last) {
(*result).first = (*input).first;
(*result++).second = (*input++).second;
}
return result;
}
} // namespace rheolef
// ----------------------------------------------------------------------------
// generic set_op for the operator= += -= definition
// ----------------------------------------------------------------------------
// author: Pierre.Saramito@imag.fr
// date: 13 april 2020
namespace rheolef { namespace details {
// concept of class_reference
// such as disarray::dis_reference
template<class T>
struct is_class_reference : std::false_type {};
// generic "set_op" used to define
// operator= += -=
// should work at least when
// - T1=T2=double
// - Reference=disarray::dis_reference and T=double
// - IndexSet=index_set and T=int or size_t
// - PairSet=index_set and T=double and Size=size_t
//
#define _RHEOLEF_generic_set_xxx_op(NAME,OP) \
struct NAME { \
template <class T1, class T2> \
typename std::enable_if< \
std::is_convertible<T1,T2>::value \
,T2&>::type \
operator() (T2& x, const T1& y) const { x OP y; return x; } \
\
template <class T, class Reference> \
typename std::enable_if< \
!std::is_convertible<T,Reference>::value && \
is_class_reference<Reference>::value && \
std::is_member_function_pointer< \
decltype(static_cast<Reference& (Reference::*)(T)> \
(&Reference::operator OP)) \
>::value \
,Reference>::type \
operator() (Reference x, const T& y) const { x OP y; return x; } \
\
template <class T, class Reference> \
typename std::enable_if< \
!std::is_convertible<T,Reference>::value && \
std::is_class<Reference>::value && \
std::is_member_function_pointer< \
decltype(static_cast<Reference& (Reference::*)(const T&)> \
(&Reference::operator OP)) \
>::value \
,Reference>::type \
operator() (Reference x, const T& y) const { x OP y; return x; } \
\
template <class T, class IndexSet> \
typename std::enable_if< \
std::is_convertible<T,size_t>::value && \
std::is_class<IndexSet>::value && \
std::is_member_function_pointer< \
decltype(static_cast<IndexSet& (IndexSet::*)(size_t)> \
(&IndexSet::operator OP)) \
>::value \
,IndexSet&>::type \
operator() (IndexSet& x, const T& y) const { x OP y; return x; } \
\
template <class T, class PairSet, class Size> \
typename std::enable_if< \
std::is_convertible<Size,size_t>::value && \
std::is_class<PairSet>::value \
,PairSet&>::type \
operator() (PairSet& x, const std::pair<Size,T>& y) const { x OP y; return x; } \
};
_RHEOLEF_generic_set_xxx_op(generic_set_op,=)
_RHEOLEF_generic_set_xxx_op(generic_set_plus_op,+=)
_RHEOLEF_generic_set_xxx_op(generic_set_minus_op,-=)
#undef _RHEOLEF_generic_set_xxx_op
#define _RHEOLEF_generic_set_xxx_op(NAME,FUN) \
struct NAME { \
template <class T1, class T2> \
typename std::enable_if< \
std::is_convertible<T1,T2>::value \
,T2&>::type \
operator() (T2& x, const T1& y) const { return x = FUN(x,T2(y)); } \
};
_RHEOLEF_generic_set_xxx_op(generic_set_min_op,std::min)
_RHEOLEF_generic_set_xxx_op(generic_set_max_op,std::max)
#undef _RHEOLEF_generic_set_xxx_op
// this traits will be overloaded by index_set and pair_set
// as generic_set_plus_op:
template <class T>
struct default_set_op_traits {
using type = generic_set_op;
};
}} // namespace rheolef::details
// ----------------------------------------------------------------------------
// container traits
// ----------------------------------------------------------------------------
#include <boost/serialization/utility.hpp>
#ifdef _RHEOLEF_HAVE_MPI
#include <boost/mpi/datatype.hpp>
#endif // _RHEOLEF_HAVE_MPI
namespace rheolef { namespace details {
template<class T>
struct is_container : std::false_type {
typedef std::false_type type;
};
#ifdef _RHEOLEF_HAVE_MPI
template <class T>
struct is_container_of_mpi_datatype : std::false_type {
typedef std::false_type type;
};
#endif // _RHEOLEF_HAVE_MPI
}} // namespace rheolef::details
#endif // _RHEO_MSG_UTIL_H
|