1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
|
///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
///
/// =========================================================================
/// Banded level set routines
///
/// Authors: Lara Aborm, Jocelyn Etienne, Pierre Saramito
///
#include "rheolef/level_set.h"
#include "rheolef/field.h"
namespace rheolef {
// --------------------------------------------------------------------------------
// gestion de la numerotation locale
// --------------------------------------------------------------------------------
// TODO: move in reference_element
static
size_t
edge_t_iloc (size_t l, size_t m)
{
static const int edge_t_iloc_table [3][3] = {
{-1, 0, 2},
{ 0,-1, 1},
{ 2, 1,-1}};
return size_t(edge_t_iloc_table [l][m]);
}
static
size_t
edge_T_iloc (size_t l, size_t m)
{
static const int edge_T_iloc_table [4][4] = {
{-1, 0, 2, 3},
{ 0,-1, 1, 4},
{ 2, 1,-1, 5},
{ 3, 4, 5,-1}};
return size_t(edge_T_iloc_table [l][m]);
}
static
size_t
face_T_iloc (size_t l, size_t m, size_t n)
{
static size_t face_T_iloc_table [4][4][4];
bool static initialized = false;
if (!initialized) {
for (size_t i = 0; i < 4; i++)
for (size_t j = 0; j < 4; j++)
for (size_t k = 0; k < 4; k++)
face_T_iloc_table [i][j][k] = size_t(-1);
reference_element hat_K (reference_element::T);
for (size_t i_face = 0; i_face < hat_K.n_face(); i_face++) {
size_t p[3];
for (size_t k = 0; k < 3; k++) p[k] = hat_K.subgeo_local_vertex(2,i_face,k);
face_T_iloc_table [p[0]][p[1]][p[2]] = i_face;
face_T_iloc_table [p[0]][p[2]][p[1]] = i_face;
face_T_iloc_table [p[1]][p[0]][p[2]] = i_face;
face_T_iloc_table [p[1]][p[2]][p[0]] = i_face;
face_T_iloc_table [p[2]][p[0]][p[1]] = i_face;
face_T_iloc_table [p[2]][p[1]][p[0]] = i_face;
}
}
return face_T_iloc_table [l][m][n];
}
// --------------------------------------------------------------------------------
// gestion de la precision
// --------------------------------------------------------------------------------
static Float level_set_epsilon = 100*std::numeric_limits<Float>::epsilon();
template <class T>
static
bool
is_zero (const T& x) {
// TODO: control by level_set_option ?
return fabs(x) <= level_set_epsilon;
}
template <class T>
static
bool
have_same_sign (const T& x, const T& y) {
using namespace details;
return !is_zero(x) && !is_zero(y) && x*y > 0;
}
template <class T>
static
bool
have_opposite_sign (const T& x, const T& y) {
using namespace details;
return !is_zero(x) && !is_zero(y) && x*y < 0;
}
// --------------------------------------------------------------------------------
// 2D: fonctions locales : sur un seul element triangle
// --------------------------------------------------------------------------------
// appele lors du 1er passage qui liste les elements de la bande cas de dimension 2
template <class T>
static
bool
belongs_to_band_t (const std::vector<T>& f) {
using namespace details;
if (have_same_sign(f[0],f[1]) && have_same_sign(f[0],f[2])) return false;
// on rejette le triangle dans tous les sommets de meme signe :
if (is_zero(f[0]) && is_zero(f[1]) && is_zero(f[2])) return false;
// on rejette les triangles dont un sommet :
if (is_zero(f[0]) && have_same_sign(f[1],f[2])) return false;
if (is_zero(f[1]) && have_same_sign(f[0],f[2])) return false;
if (is_zero(f[2]) && have_same_sign(f[0],f[1])) return false;
return true;
}
// apellee lors du calcul des matrices M_K et A_K pour K dans la bande cas de dimension 2
template <class T>
static
size_t
isolated_vertex_t (const std::vector<T>& f)
{
using namespace details;
/* on retourne le sommet isole a chaque fois */
if (have_same_sign (f[0],f[1]) && have_opposite_sign(f[0],f[2])) return 2;
if (have_opposite_sign(f[0],f[1]) && have_same_sign (f[0],f[2])) return 1;
if (have_opposite_sign(f[0],f[1]) && have_opposite_sign(f[0],f[2])) return 0;
if (is_zero(f[0]) && have_opposite_sign(f[1],f[2])) return 1; /* on peut retourner 2 de meme*/
if (is_zero(f[1]) && have_opposite_sign(f[0],f[2])) return 0; /* on peut retourner 2 */
if (is_zero(f[2]) && have_opposite_sign(f[0],f[1])) return 0; /* on peut retourner 1 */
if (is_zero(f[0]) && is_zero(f[1]) && ! is_zero(f[2])) return 2;
if (is_zero(f[0]) && is_zero(f[2]) && ! is_zero(f[1])) return 1;
return 0; /* f1 == 0 et f2 == 0 et f0 != 0 */
}
template <class T>
static
void
subcompute_matrix_t (
const std::vector<point_basic<T> >& x,
const std::vector<T>& f,
std::vector<size_t>& j,
point_basic<T>& a,
point_basic<T>& b,
T& S)
{
using namespace details;
j.resize (3);
j[0] = isolated_vertex_t (f);
j[1] = (j[0]+1) % 3;
j[2] = (j[1]+1) % 3;
// edge {j1,j2} has normal oriented as grad(f), in f>0 direction:
if (! is_zero(f[j[0]]) && f[j[0]] < 0) std::swap (j[1], j[2]);
T theta_1= f[j[1]]/(f[j[1]]-f[j[0]]);
T theta_2= f[j[2]]/(f[j[2]]-f[j[0]]);
// calcul des coordonnes d'intersection
a = theta_1*x[j[0]]+(1-theta_1)*x[j[1]];
b = theta_2*x[j[0]]+(1-theta_2)*x[j[2]];
S = sqrt(pow(a[0]-b[0],2)+pow(a[1]-b[1],2));
if (is_zero(f[j[1]]) && is_zero(f[j[2]])) {
S /= 2;
}
}
// --------------------------------------------------------------------------------
// 3D: fonctions locales : sur un seul element tetraedre
// --------------------------------------------------------------------------------
class quadruplet {
public:
quadruplet (size_t a=0, size_t b=0, size_t c=0, size_t d=0) {
q[0]=a;
q[1]=b;
q[2]=c;
q[3]=d;
}
size_t operator[] (size_t i) const {
return q[i%4];
}
size_t& operator[] (size_t i) {
return q[i%4];
}
friend std::ostream& operator<< (std::ostream& out, const quadruplet& q) {
out << "((" << q[0] << "," << q[1] << "), (" << q[2] << "," << q[3] << "))";
return out;
}
protected:
size_t q[4];
};
// appele lors du 1er passage qui liste les elements de la bande cas de dimension 3
template <class T>
static
bool
belongs_to_band_T (const std::vector<T>& f)
{
using namespace details;
if (have_same_sign(f[0],f[1]) && have_same_sign(f[0],f[2]) && have_same_sign(f[2],f[3])) return false;
// cas ou 4 points s'annulent en dimension 3 est degenere
if (is_zero(f[0]) && is_zero(f[1]) && is_zero(f[2]) && is_zero(f[3])) return false;
if (is_zero(f[0]) && have_same_sign(f[1],f[2]) && have_same_sign(f[1],f[3])) return false;
if (is_zero(f[1]) && have_same_sign(f[0],f[2]) && have_same_sign(f[0],f[3])) return false;
if (is_zero(f[2]) && have_same_sign(f[0],f[1]) && have_same_sign(f[0],f[3])) return false;
if (is_zero(f[3]) && have_same_sign(f[0],f[1]) && have_same_sign(f[0],f[2])) return false;
// cas ou f s'annule sur 2 sommets et garde le meme signe sur les 2 autres sommets est exclu
if (is_zero(f[0]) && is_zero(f[1]) && have_same_sign(f[2],f[3])) return false;
if (is_zero(f[0]) && is_zero(f[2]) && have_same_sign(f[1],f[3])) return false;
if (is_zero(f[0]) && is_zero(f[3]) && have_same_sign(f[1],f[2])) return false;
if (is_zero(f[1]) && is_zero(f[2]) && have_same_sign(f[0],f[3])) return false;
if (is_zero(f[1]) && is_zero(f[3]) && have_same_sign(f[0],f[2])) return false;
if (is_zero(f[2]) && is_zero(f[3]) && have_same_sign(f[1],f[0])) return false;
return true;
}
// apellee lors du calcul des matrices M_K et A_K pour T dans la bande cas de dimension
template <class T>
bool
intersection_is_quadrilateral_T (const std::vector<T>& f, quadruplet& q)
{
if (have_same_sign(f[0],f[1]) && have_opposite_sign(f[0],f[2]) && have_same_sign(f[2],f[3])) {
if (f[0] > 0) q = quadruplet(0,1, 2,3);
else q = quadruplet(2,3, 0,1);
return true;
}
if (have_opposite_sign(f[0],f[1]) && have_same_sign(f[0],f[2]) && have_opposite_sign(f[2],f[3])) {
if (f[0] < 0) q = quadruplet(0,2, 1,3);
else q = quadruplet(1,3, 0,2);
return true;
}
if (have_opposite_sign(f[0],f[1]) && have_opposite_sign(f[0],f[2]) && have_opposite_sign(f[2],f[3])) {
if (f[0] > 0) q = quadruplet(0,3, 1,2);
else q = quadruplet(1,2, 0,3);
return true;
}
return false;
}
// cas d'une intersection triangle:
template <class T>
static
size_t
isolated_vertex_T (const std::vector<T>& f)
{
using namespace details;
// cas ou l'intersection est un triangle
if (have_opposite_sign(f[0],f[1]) && have_opposite_sign(f[0],f[2]) && have_same_sign (f[2],f[3])) return 0;
if (have_same_sign (f[0],f[1]) && have_opposite_sign(f[0],f[2]) && have_opposite_sign(f[2],f[3])) return 2;
if (have_same_sign (f[0],f[1]) && have_same_sign (f[0],f[2]) && have_opposite_sign(f[2],f[3])) return 3;
// cas ou f s'annule sur un sommet et change de signe sur les 2 autres sommets
if (have_opposite_sign(f[0],f[1]) && have_same_sign(f[0],f[2]) && have_same_sign(f[2],f[3])) return 1;
if (is_zero(f[0]) && have_same_sign (f[1],f[2]) && have_opposite_sign(f[1],f[3])) return 3;
if (is_zero(f[0]) && have_opposite_sign(f[1],f[2]) && have_same_sign (f[1],f[3])) return 2;
if (is_zero(f[0]) && have_opposite_sign(f[1],f[2]) && have_opposite_sign(f[1],f[3])) return 1;
if (is_zero(f[1]) && have_opposite_sign(f[0],f[2]) && have_same_sign (f[0],f[3])) return 2;
if (is_zero(f[1]) && have_same_sign (f[0],f[2]) && have_opposite_sign(f[0],f[3])) return 3;
if (is_zero(f[1]) && have_opposite_sign(f[0],f[2]) && have_opposite_sign(f[0],f[3])) return 0;
if (is_zero(f[2]) && have_opposite_sign(f[0],f[1]) && have_same_sign (f[0],f[3])) return 1;
if (is_zero(f[2]) && have_same_sign (f[0],f[1]) && have_opposite_sign(f[0],f[3])) return 3;
if (is_zero(f[2]) && have_opposite_sign(f[0],f[1]) && have_opposite_sign(f[0],f[3])) return 0;
if (is_zero(f[3]) && have_opposite_sign(f[0],f[1]) && have_same_sign (f[0],f[2])) return 1;
if (is_zero(f[3]) && have_same_sign (f[0],f[1]) && have_opposite_sign(f[0],f[2])) return 2;
if (is_zero(f[3]) && have_opposite_sign(f[0],f[1]) && have_opposite_sign(f[0],f[2])) return 0;
// cas ou f s'annule en 2 sommets et change de signe sur les 2 autres sommets
if (is_zero(f[0]) && is_zero(f[1]) && have_opposite_sign(f[2],f[3])) return 2; // ou 3
if (is_zero(f[0]) && is_zero(f[2]) && have_opposite_sign(f[1],f[3])) return 1;
if (is_zero(f[0]) && is_zero(f[3]) && have_opposite_sign(f[1],f[2])) return 1;
if (is_zero(f[1]) && is_zero(f[2]) && have_opposite_sign(f[0],f[3])) return 0;
if (is_zero(f[1]) && is_zero(f[3]) && have_opposite_sign(f[0],f[2])) return 0;
if (is_zero(f[2]) && is_zero(f[3]) && have_opposite_sign(f[0],f[1])) return 0;
// le triangle d'intersection est la face du tetradre ou f s'annule sur les 3 sommets
if (is_zero(f[0]) && is_zero(f[1]) && is_zero(f[2]) && ! is_zero(f[3])) return 3;
if (is_zero(f[0]) && is_zero(f[1]) && is_zero(f[3]) && ! is_zero(f[2])) return 2;
if (is_zero(f[1]) && is_zero(f[2]) && is_zero(f[3]) && ! is_zero(f[0])) return 0;
return 1;
}
template <class T>
static
void
subcompute_matrix_triangle_T (
const std::vector<point_basic<T> >& x,
const std::vector<T>& f,
std::vector<size_t>& j,
point_basic<T>& a,
point_basic<T>& b,
point_basic<T>& c,
T& aire)
{
using namespace details;
j.resize(4);
j[0] = isolated_vertex_T (f);
j[1] = (j[0]+1) % 4;
j[2] = (j[1]+1) % 4;
j[3] = (j[2]+1) % 4;
// orient
if (! is_zero(f[j[0]]) && ((f[j[0]] > 0 && j[0] % 2 == 0) || (f[j[0]] < 0 && j[0] % 2 == 1)))
std::swap (j[1], j[2]);
T theta_1 = f[j[1]]/(f[j[1]]-f[j[0]]);
T theta_2 = f[j[2]]/(f[j[2]]-f[j[0]]);
T theta_3 = f[j[3]]/(f[j[3]]-f[j[0]]);
/* calcul des coordonnees d'intersection */
a = theta_1*x[j[0]]+(1-theta_1)*x[j[1]];
b = theta_2*x[j[0]]+(1-theta_2)*x[j[2]];
c = theta_3*x[j[0]]+(1-theta_3)*x[j[3]];
aire = 0.5* norm (vect( b-a, c-a));
if (is_zero(f[j[1]]) && is_zero(f[j[2]]) && is_zero(f[j[3]])) {
aire /= 2;
}
}
template <class T>
static
void
subcompute_matrix_quadrilateral_T (
const std::vector<point_basic<T> >& x,
const std::vector<T>& f,
const quadruplet& q,
point_basic<T>& a,
point_basic<T>& b,
point_basic<T>& c,
point_basic<T>& d,
T& aire_Q)
{
// intersection:
// a = segment {x(q0) x(q2)} inter {f=0}
// b = segment {x(q1) x(q2)} inter {f=0}
// d = segment {x(q1) x(q3)} inter {f=0}
// c = segment {x(q0) x(q3)} inter {f=0}
// quadrilatere abdc = triangle(abd) union triangle(adc)
T theta_1 = f[q[2]]/(f[q[2]]-f[q[0]]);
T theta_2 = f[q[2]]/(f[q[2]]-f[q[1]]);
T theta_3 = f[q[3]]/(f[q[3]]-f[q[0]]);
T theta_4 = f[q[3]]/(f[q[3]]-f[q[1]]);
/* calcul des coordonnees d'intersection */
a = theta_1*x[q[0]]+(1-theta_1)*x[q[2]];
b = theta_2*x[q[1]]+(1-theta_2)*x[q[2]];
c = theta_3*x[q[0]]+(1-theta_3)*x[q[3]];
d = theta_4*x[q[1]]+(1-theta_4)*x[q[3]];
aire_Q = 0.5*norm(vect(a-c,a-b)) + 0.5*norm(vect(d-c,d-b));
}
// --------------------------------------------------------------------------------
// level_set: compte the intersection mesh
// --------------------------------------------------------------------------------
typedef geo_element_auto<heap_allocator<geo_element::size_type> > element_type;
template <class T, class M>
void
gamma_list2disarray (
const std::list<point_basic<T> >& gamma_node_list,
std::array<std::list<std::pair<element_type,size_t> >,
reference_element::max_variant> gamma_side_list,
const communicator& comm,
size_t d,
disarray<point_basic<T>, M>& gamma_node,
std::array<disarray<element_type,M>,
reference_element::max_variant>& gamma_side,
disarray<size_t,M>& sid_ie2bnd_ie)
{
typedef geo_element::size_type size_type;
// 1) nodes:
size_type nnod = gamma_node_list.size();
distributor gamma_node_ownership (distributor::decide, comm, nnod);
gamma_node.resize (gamma_node_ownership);
typename disarray<point_basic<T>, M>::iterator node_iter = gamma_node.begin();
for (typename std::list<point_basic<T> >::const_iterator
iter = gamma_node_list.begin(),
last = gamma_node_list.end();
iter != last; iter++, node_iter++) {
*node_iter = *iter;
}
// 2) sides:
heap_allocator<size_type> alloc;
size_type map_dim = d-1;
size_type order = 1;
size_type nsid = 0;
for (size_type variant = reference_element::first_variant_by_dimension(map_dim);
variant < reference_element:: last_variant_by_dimension(map_dim); variant++) {
size_type nsidv = gamma_side_list [variant].size();
distributor gamma_sidv_ownership (distributor::decide, comm, nsidv);
nsid += nsidv;
element_type element_init (variant, order, alloc);
gamma_side[variant].resize (gamma_sidv_ownership, element_init);
typename disarray<element_type, M>::iterator side_iter = gamma_side[variant].begin();
for (typename std::list<std::pair<element_type,size_type> >::const_iterator
iter = gamma_side_list[variant].begin(),
last = gamma_side_list[variant].end();
iter != last; iter++, side_iter++) {
*side_iter = (*iter).first;
}
}
// 3) side2band correspondance
distributor gamma_sid_ownership (distributor::decide, comm, nsid);
const size_type undef = std::numeric_limits<size_t>::max();
sid_ie2bnd_ie.resize (gamma_sid_ownership, undef);
typename disarray<size_type, M>::iterator idx_iter = sid_ie2bnd_ie.begin();
for (size_type variant = reference_element::first_variant_by_dimension(map_dim);
variant < reference_element:: last_variant_by_dimension(map_dim); variant++) {
for (typename std::list<std::pair<element_type,size_type> >::const_iterator
iter = gamma_side_list[variant].begin(),
last = gamma_side_list[variant].end();
iter != last; iter++, idx_iter++) {
*idx_iter = (*iter).second;
}
}
}
struct to_solve {
size_t variant, S_ige, k, dis_i;
to_solve (size_t variant1, size_t S_ige1=0, size_t k1=0, size_t dis_i1=0)
: variant(variant1), S_ige(S_ige1), k(k1), dis_i(dis_i1) {}
};
template <class T, class M>
geo_basic<T,M>
level_set_internal (
const field_basic<T,M>& fh,
const level_set_option& opt,
std::vector<size_t>& bnd_dom_ie_list,
disarray<size_t,M>& sid_ie2bnd_ie)
{
using namespace std;
using namespace details;
typedef geo_element::size_type size_type;
level_set_epsilon = opt.epsilon; // set global variable
fh.dis_dof_update();
const geo_basic<T,M>& lambda = fh.get_geo();
const space_basic<T,M>& Xh = fh.get_space();
check_macro(lambda.order() == 1, "Only order=1 level set mesh supported");
check_macro(fh.get_approx() == "P1", "Only P1 level set function supported");
size_type order = 1;
std::vector<size_type> dis_idof;
std::vector<T> f;
size_type d = lambda.dimension();
size_type map_dim = d-1;
heap_allocator<size_type> alloc;
std::array<list<pair<element_type,size_type> >,
reference_element::max_variant> gamma_side_list;
list<point_basic<T> > gamma_node_list;
std::vector<size_type> j(d+1);
std::vector<point_basic<T> > x(d+1);
const size_type not_marked = numeric_limits<size_t>::max();
const size_type undef = numeric_limits<size_t>::max();
distributor node_ownership = lambda.sizes().node_ownership;
size_type first_dis_inod = node_ownership.first_index();
disarray<size_type> marked_node (node_ownership, not_marked);
disarray<size_type> extern_node (node_ownership, not_marked);
set<size_type> ext_marked_node_idx;
list<to_solve> node_to_solve;
distributor edge_ownership = lambda.sizes().ownership_by_dimension[1];
size_type first_dis_iedg = edge_ownership.first_index();
disarray<size_type> marked_edge (edge_ownership, not_marked);
disarray<std::pair<size_type,point_basic<T> > >
extern_edge (edge_ownership, std::make_pair(not_marked,point_basic<T>()));
set<size_type> ext_marked_edge_idx;
list<to_solve> edge_to_solve;
distributor face_ownership = lambda.sizes().ownership_by_dimension[2];
size_type first_dis_ifac = face_ownership.first_index();
disarray<size_type> marked_face (face_ownership, not_marked);
communicator comm = node_ownership.comm();
size_type my_proc = comm.rank();
bnd_dom_ie_list.resize(0);
// ------------------------------------------------------------
// 1) loop on lambda & build intersection sides
// ------------------------------------------------------------
for (size_type ie = 0, ne = lambda.size(), bnd_ie = 0; ie < ne; ie++) {
// ---------------------------------------------------------
// 1.1) fast check if there is an intersection:
// ---------------------------------------------------------
const geo_element& K = lambda [ie];
Xh.dis_idof (K, dis_idof);
f.resize (dis_idof.size());
for (size_type loc_idof = 0, loc_ndof = dis_idof.size(); loc_idof < loc_ndof; loc_idof++) {
f [loc_idof] = fh.dis_dof (dis_idof[loc_idof]);
}
bool do_intersect = false;
switch (K.variant()) {
case reference_element::t:
do_intersect = belongs_to_band_t (f);
break;
case reference_element::T: {
do_intersect = belongs_to_band_T (f);
break;
}
default :
error_macro("level set: element type `" << K.name() << "' not yet supported");
}
if (! do_intersect) continue;
bnd_dom_ie_list.push_back (ie);
// ---------------------------------------------------------
// 1.2) compute the intersection
// ---------------------------------------------------------
x.resize (dis_idof.size());
for (size_type loc_idof = 0, loc_ndof = dis_idof.size(); loc_idof < loc_ndof; loc_idof++) {
size_type loc_inod = loc_idof; // assume here that fh has an isoparametric approx
size_type dis_inod = K [loc_inod];
x [loc_idof] = lambda.dis_node(dis_inod);
}
element_type S (alloc);
switch (K.variant()) {
case reference_element::t: {
// ---------------------------------------------------------
// 1.2.a) triangle -> 1 edge
// ---------------------------------------------------------
point_basic<T> a, b;
T length;
subcompute_matrix_t (x, f, j, a, b, length);
if (is_zero(f[j[1]]) && is_zero(f[j[2]])) {
// ---------------------------------------------------------
// 1.2.a.1) edge {j1,j2} is included in the bbox mesh
// ---------------------------------------------------------
for (size_type k = 0; k < 2; k++) {
size_type dis_inod = K[j[k+1]];
if (node_ownership.is_owned (dis_inod)) {
size_type inod = dis_inod - first_dis_inod;
if (marked_node [inod] == not_marked) {
marked_node [inod] = gamma_node_list.size();
gamma_node_list.push_back (lambda.node(inod));
}
} else {
// dis_inod is owned by another partition jproc:
// if there is another neighbour element K' from the same partition jproc
// then jproc will insert dis_inod in gamma
// so, there is nothing to do here
// otherwise, dis_inod will be orphan in jproc and will be re-affected to my_proc
extern_node.dis_entry (dis_inod) = my_proc;
}
}
size_type loc_iedg = edge_t_iloc (j[1], j[2]);
size_type dis_iedg = K.edge (loc_iedg);
if (edge_ownership.is_owned (dis_iedg)) {
size_type iedg = dis_iedg - first_dis_iedg;
if (marked_edge [iedg] == not_marked) {
S.reset(reference_element::e, order);
marked_edge [iedg] = gamma_side_list [S.variant()].size();
size_type S_ige = marked_edge [iedg];
for (size_type k = 0; k < S.n_node(); k++) {
size_type dis_inod = K[j[k+1]];
if (node_ownership.is_owned (dis_inod)) {
size_type inod = dis_inod - first_dis_inod;
S[k] = marked_node [inod];
} else {
S[k] = undef;
node_to_solve.push_back (to_solve (S.variant(), S_ige, k, dis_inod));
ext_marked_node_idx.insert (dis_inod);
}
}
gamma_side_list [S.variant()].push_back (make_pair(S,bnd_ie));
}
} else {
// intersection is an edge of lambda that is owned by another partition jproc
// the neighbour element K' across this e"dge belongs to the same partition jproc
// and will insert dis_iedg in gamma
// so, there is nothing to do here
}
} else {
// ---------------------------------------------------------
// 1.2.a.2) edge {j1,j2} is interior to the triangle
// ---------------------------------------------------------
S.reset(reference_element::e, order);
size_type S_ige = gamma_side_list [S.variant()].size ();
point_basic<T> xx[2] = {a,b};
for (size_type k = 0; k < 2; k++) {
if (! is_zero(f[j[k+1]]) && ! is_zero(f[j[0]])) {
// xk is inside edge {j0,j[k+1]} of triangle K:
size_type loc_iedg = edge_t_iloc (j[0], j[k+1]);
size_type dis_iedg = K.edge (loc_iedg);
if (edge_ownership.is_owned (dis_iedg)) {
size_type iedg = dis_iedg - first_dis_iedg;
if (marked_edge [iedg] == not_marked) {
marked_edge [iedg] = gamma_node_list.size();
gamma_node_list.push_back (xx[k]);
}
S[k] = marked_edge [iedg];
} else {
S[k] = undef;
edge_to_solve.push_back (to_solve (S.variant(), S_ige, k, dis_iedg));
ext_marked_edge_idx.insert (dis_iedg);
extern_edge.dis_entry (dis_iedg) = std::make_pair (my_proc, xx[k]);
}
} else { // xk is at edge boundary: a node of the 2d mesh
size_type dis_inod = (!is_zero(f[j[0]])) ? K[j[k+1]] : K[j[0]];
if (node_ownership.is_owned (dis_inod)) {
size_type inod = dis_inod - first_dis_inod;
if (marked_node [inod] == not_marked) {
marked_node [inod] = gamma_node_list.size();
gamma_node_list.push_back (lambda.node(inod));
}
S[k] = marked_node [inod];
} else {
S[k] = undef;
node_to_solve.push_back (to_solve (S.variant(), S_ige, k, dis_inod));
ext_marked_node_idx.insert (dis_inod);
extern_node.dis_entry (dis_inod) = my_proc;
}
}
}
// S[0] == S[1] when is_zero(f[j[0]]) but f[j[0]] != 0, i.e. precision pbs
check_macro (S[0] != S[1] || S[0] == undef, "degenerate 2d intersection");
gamma_side_list [S.variant()].push_back (make_pair(S,bnd_ie));
}
break;
}
case reference_element::T: {
// ---------------------------------------------------------
// 1.2.b) tetrahedron -> 1 triangle or 1 quadrangle
// ---------------------------------------------------------
quadruplet q;
point_basic<T> a, b, c, d;
T aire;
if (!intersection_is_quadrilateral_T (f, q)) {
subcompute_matrix_triangle_T (x, f, j, a, b, c, aire);
if (is_zero(f[j[1]]) && is_zero(f[j[2]]) && is_zero(f[j[3]])) {
// the full face {j1,j2,j3} is included in the surface mesh:
for (size_type k = 0; k < 3; k++) {
size_type dis_inod = K[j[k+1]];
if (node_ownership.is_owned (dis_inod)) {
size_type inod = dis_inod - first_dis_inod;
if (marked_node [inod] == not_marked) {
marked_node [inod] = gamma_node_list.size();
gamma_node_list.push_back (lambda.node(inod));
}
} else {
// dis_inod is owned by another partition jproc:
// if there is another neighbour element K' from the same partition jproc
// then jproc will insert dis_inod in gamma
// so, there is nothing to do here
// otherwise, dis_inod will be orphan in jproc and will be re-affected to my_proc
extern_node.dis_entry (dis_inod) = my_proc;
}
}
size_type loc_ifac = face_T_iloc (j[1], j[2], j[3]);
size_type dis_ifac = K.face (loc_ifac);
if (face_ownership.is_owned (dis_ifac)) {
size_type ifac = dis_ifac - first_dis_ifac;
if (marked_face [ifac] == not_marked) {
S.reset(reference_element::t, order);
marked_face [ifac] = gamma_side_list [S.variant()].size();
size_type S_ige = marked_face [ifac];
for (size_type k = 0; k < S.n_node(); k++) {
size_type dis_inod = K[j[k+1]];
if (node_ownership.is_owned (dis_inod)) {
size_type inod = dis_inod - first_dis_inod;
S[k] = marked_node [inod];
} else {
S[k] = undef;
node_to_solve.push_back (to_solve (S.variant(), S_ige, k, dis_inod));
ext_marked_node_idx.insert (dis_inod);
}
}
gamma_side_list [S.variant()].push_back (make_pair(S,bnd_ie));
} else {
// the side will be inserted by the neighbour of K in another partition
// so, nothing to do
}
} else {
// intersection is a face of lambda that is owned by another partition jproc
// the neighbour element K' across this face belongs to the same partition jproc
// and will insert dis_ifac in gamma
// so, there is nothing to do here
}
} else {
// create the new face {j1,j2,j3} by intersections:
S.reset(reference_element::t, order);
size_type S_ige = gamma_side_list [S.variant()].size();
point_basic<T> xx[3] = {a,b,c};
for (size_type k = 0; k < 3; k++) {
if (! is_zero(f[j[k+1]]) && ! is_zero(f[j[0]])) {
// xk is inside edge {j0,j[k+1]} of triangle K:
size_type loc_iedg = edge_T_iloc (j[0], j[k+1]);
size_type dis_iedg = K.edge (loc_iedg);
if (edge_ownership.is_owned (dis_iedg)) {
size_type iedg = dis_iedg - first_dis_iedg;
if (marked_edge [iedg] == not_marked) {
marked_edge [iedg] = gamma_node_list.size();
gamma_node_list.push_back (xx[k]);
}
S[k] = marked_edge [iedg];
} else {
S[k] = undef;
edge_to_solve.push_back (to_solve (S.variant(), S_ige, k, dis_iedg));
ext_marked_edge_idx.insert (dis_iedg);
extern_edge.dis_entry (dis_iedg) = std::make_pair (my_proc, xx[k]);
}
} else { // xk is at edge boundary: a node of the 2d mesh
size_type dis_inod = (!is_zero(f[j[0]])) ? K[j[k+1]] : K[j[0]];
if (node_ownership.is_owned (dis_inod)) {
size_type inod = dis_inod - first_dis_inod;
if (marked_node [inod] == not_marked) {
marked_node [inod] = gamma_node_list.size();
gamma_node_list.push_back (lambda.node(inod));
}
S[k] = marked_node [inod];
} else {
S[k] = undef;
node_to_solve.push_back (to_solve (S.variant(), S_ige, k, dis_inod));
ext_marked_node_idx.insert (dis_inod);
extern_node.dis_entry (dis_inod) = my_proc;
}
}
}
// S[0] == S[j] when is_zero(f[j[0]]) but f[j[0]] != 0, i.e. precision pbs
check_macro ((S[0] != S[1] || S[0] == undef) &&
(S[1] != S[2] || S[1] == undef) &&
(S[2] != S[0] || S[2] == undef), "degenerate 3d intersection");
gamma_side_list [S.variant()].push_back (make_pair(S,bnd_ie));
}
} else {
// create the new quadri face by intersections:
subcompute_matrix_quadrilateral_T (x, f, q, a, b, c, d, aire);
S.reset (reference_element::q, order);
size_type S_ige = gamma_side_list[reference_element::q].size();
size_type S1_ige = gamma_side_list[reference_element::t].size(); // or S1+S2=two 't'
size_type S2_ige = S1_ige + 1;
size_type iloc_S1[4] = {0, 1, 2, undef}; // the way to slip a q into 2 t
size_type iloc_S2[4] = {0, undef, 1, 2};
point_basic<T> xx[4] = {a,b,d,c};
size_type s[4] = {q[0],q[2],q[1],q[3]};
for (size_type k = 0; k < 4; k++) {
size_type k1 = (k+1) % 4;
if (! is_zero(f[s[k]]) && ! is_zero(f[s[k1]])) {
// xk is inside edge {j0,j[k+1]} of triangle K:
size_type loc_iedg = edge_T_iloc (s[k], s[k1]);
size_type dis_iedg = K.edge (loc_iedg);
if (edge_ownership.is_owned (dis_iedg)) {
size_type iedg = dis_iedg - first_dis_iedg;
if (marked_edge [iedg] == not_marked) {
marked_edge [iedg] = gamma_node_list.size();
gamma_node_list.push_back (xx[k]);
}
S[k] = marked_edge [iedg];
} else {
S[k] = undef;
if (!opt.split_to_triangle) {
edge_to_solve.push_back (to_solve (reference_element::q, S_ige, k, dis_iedg));
} else {
if (iloc_S1[k] != undef) edge_to_solve.push_back (to_solve (reference_element::t, S1_ige, iloc_S1[k], dis_iedg));
if (iloc_S2[k] != undef) edge_to_solve.push_back (to_solve (reference_element::t, S2_ige, iloc_S2[k], dis_iedg));
}
ext_marked_edge_idx.insert (dis_iedg);
extern_edge.dis_entry (dis_iedg) = std::make_pair (my_proc, xx[k]);
}
} else { // xk is at edge boundary: a node of the 2d mesh
size_type dis_inod = is_zero(f[s[k]]) ? K[s[k]] : K[s[k1]];
if (node_ownership.is_owned (dis_inod)) {
size_type inod = dis_inod - first_dis_inod;
if (marked_node [inod] == not_marked) {
marked_node [inod] = gamma_node_list.size();
gamma_node_list.push_back (lambda.node(inod));
}
S[k] = marked_node [inod];
} else {
S[k] = undef;
if (!opt.split_to_triangle) {
node_to_solve.push_back (to_solve (reference_element::q, S_ige, k, dis_inod));
} else {
if (iloc_S1[k] != undef) node_to_solve.push_back (to_solve (reference_element::t, S1_ige, iloc_S1[k], dis_inod));
if (iloc_S2[k] != undef) node_to_solve.push_back (to_solve (reference_element::t, S2_ige, iloc_S2[k], dis_inod));
}
ext_marked_node_idx.insert (dis_inod);
}
}
}
if (!opt.split_to_triangle) {
check_macro ((S[0] != S[1] || S[0] == undef) &&
(S[1] != S[2] || S[1] == undef) &&
(S[2] != S[3] || S[2] == undef) &&
(S[3] != S[0] || S[3] == undef), "degenerate 3d intersection");
// S[0] == S[j] when is_zero(f[j[0]]) but f[j[0]] != 0, i.e. precision pbs
gamma_side_list [S.variant()].push_back (make_pair(S,bnd_ie));
} else {
// split quadri into 2 triangles
// one K -> two (S1,S2) faces: table element2face may return a pair of size_t
// but S1-> and S2->K only is required during assembly
element_type S1 (alloc);
S1.reset (reference_element::t, order);
for (size_type k = 0; k < 4; k++) {
if (iloc_S1[k] != undef) S1 [iloc_S1[k]] = S[k];
}
check_macro ((S1[0] != S1[1] || S1[0] == undef) &&
(S1[1] != S1[2] || S1[1] == undef) &&
(S1[2] != S1[0] || S1[2] == undef), "degenerate 3d intersection");
gamma_side_list [S1.variant()].push_back (make_pair(S1,bnd_ie));
element_type S2 (alloc);
S2.reset (reference_element::t, order);
for (size_type k = 0; k < 4; k++) {
if (iloc_S2[k] != undef) S2 [iloc_S2[k]] = S[k];
}
check_macro ((S2[0] != S2[1] || S2[0] == undef) &&
(S2[1] != S2[2] || S2[1] == undef) &&
(S2[2] != S2[0] || S2[2] == undef), "degenerate 3d intersection");
gamma_side_list [S2.variant()].push_back (make_pair(S2,bnd_ie));
}
} // if-else
break;
}
default : {
error_macro("level set intersection: element not yet implemented: " << K.name());
}
}
bnd_ie++;
}
extern_node.dis_entry_assembly();
extern_edge.dis_entry_assembly();
// ------------------------------------------------------------
// 2) solve orphan nodes, if any
// ------------------------------------------------------------
// 2.1.a) re-affect orphan node to another process where gamma use it
distributor comm_ownership (comm.size(), comm, 1);
disarray<index_set,M> orphan_node (comm_ownership, index_set());
for (size_type inod = 0, nnod = node_ownership.size(); inod < nnod; inod++) {
if (!(extern_node [inod] != not_marked && marked_node [inod] == not_marked)) continue;
// inod is orphan in this proc: not used for gamma (but used for lambda)
// re-affect it to a process that use it for gamma
size_type iproc = extern_node[inod];
size_type dis_inod = first_dis_inod + inod;
index_set dis_inod_set;
dis_inod_set.insert (dis_inod);
orphan_node.dis_entry (iproc) += dis_inod_set;
}
orphan_node.dis_entry_assembly();
// 2.1.b) re-affect orphan edge to another process where gamma use it
// there could be orphan edge in 2d if lambda is a part of a regular mesh:
// => a boundary edge can belong to another proc. This is not yet handled
disarray<index_set,M> orphan_edge (comm_ownership, index_set());
for (size_type iedg = 0, nedg = edge_ownership.size(); iedg < nedg; iedg++) {
if (!(extern_edge [iedg].first != not_marked && marked_edge [iedg] == not_marked)) continue;
// iedg is orphan in this proc: not used for gamma (but used for lambda)
// re-affect it to a process that use it for gamma
size_type iproc = extern_edge[iedg].first;
size_type dis_iedg = first_dis_iedg + iedg;
index_set dis_iedg_set;
dis_iedg_set.insert (dis_iedg);
orphan_edge.dis_entry (iproc) += dis_iedg_set;
}
orphan_edge.dis_entry_assembly ();
check_macro (orphan_edge[0].size() == 0, "unexpected orphan edges");
// 2.2) count total nodes used by gamma
size_type orphan_gamma_nnod = orphan_node[0].size();
size_type regular_gamma_nnod = gamma_node_list.size();
size_type gamma_nnod = regular_gamma_nnod + orphan_gamma_nnod;
distributor gamma_node_ownership (distributor::decide, comm, gamma_nnod);
// 2.3) shift marked_node & marked_edge from gamma_inod local count to gamma_dis_inod one
size_type gamma_first_dis_inod = gamma_node_ownership.first_index();
for (size_type inod = 0, nnod = node_ownership.size(); inod < nnod; inod++) {
if (marked_node [inod] == not_marked) continue;
marked_node [inod] += gamma_first_dis_inod;
}
for (size_type iedg = 0, nedg = edge_ownership.size(); iedg < nedg; iedg++) {
if (marked_edge [iedg] == not_marked) continue;
marked_edge [iedg] += gamma_first_dis_inod;
}
// 2.4) append orphan node to regular one in gamma_node_list and set marked_node
for (index_set::const_iterator
iter = orphan_node[0].begin(),
last = orphan_node[0].end(); iter != last; ++iter) {
size_type dis_inod = *iter;
marked_node.dis_entry(dis_inod) = gamma_first_dis_inod + gamma_node_list.size();
gamma_node_list.push_back (lambda.dis_node(dis_inod));
}
marked_node.dis_entry_assembly();
marked_edge.dis_entry_assembly();
// ------------------------------------------------------------
// 3) convert lists to fixed size distributed arrays
// ------------------------------------------------------------
disarray<point_basic<T>, M> gamma_node;
std::array<disarray<element_type,M>, reference_element::max_variant> gamma_side;
gamma_list2disarray (gamma_node_list, gamma_side_list, comm, d, gamma_node, gamma_side, sid_ie2bnd_ie);
// ------------------------------------------------------------
// 4) replace inod to dis_inod in element lists
// ------------------------------------------------------------
for (size_type variant = reference_element::first_variant_by_dimension(map_dim);
variant < reference_element:: last_variant_by_dimension(map_dim); variant++) {
for (size_type ige = 0, nge = gamma_side[variant].size(); ige < nge; ige++) {
element_type& S = gamma_side[variant][ige];
for (size_type loc_inod = 0, loc_nnod = S.n_node(); loc_inod < loc_nnod; loc_inod++) {
if (S[loc_inod] == undef) continue; // external node, will be solved later
S[loc_inod] += gamma_first_dis_inod;
}
}
}
// ----------------------------------------------------------------
// 5) solve intersection that are located on external edges & nodes
// ----------------------------------------------------------------
marked_node.set_dis_indexes (ext_marked_node_idx);
for (list<to_solve>::const_iterator iter = node_to_solve.begin(),
last = node_to_solve.end(); iter != last; iter++) {
const to_solve& x = *iter;
element_type& S = gamma_side[x.variant][x.S_ige];
check_macro (S[x.k] == undef, "external index already solved");
size_type dis_inod = x.dis_i;
size_type iproc = node_ownership.find_owner(dis_inod);
size_type gamma_dis_inod = marked_node.dis_at (dis_inod);
S[x.k] = gamma_dis_inod;
}
marked_edge.set_dis_indexes (ext_marked_edge_idx);
for (list<to_solve>::const_iterator iter = edge_to_solve.begin(),
last = edge_to_solve.end(); iter != last; iter++) {
const to_solve& x = *iter;
element_type& S = gamma_side[x.variant][x.S_ige];
check_macro (S[x.k] == undef, "external index already solved");
size_type dis_iedg = x.dis_i;
size_type iproc = edge_ownership.find_owner(dis_iedg);
size_type gamma_dis_inod = marked_edge.dis_at (dis_iedg);
S[x.k] = gamma_dis_inod;
}
// ------------------------------------------------------------
// 6) convert intersection to geo
// ------------------------------------------------------------
geo_basic<T,M> gamma (lambda, gamma_node, gamma_side);
return gamma;
}
template <class T, class M>
geo_basic<T,M>
level_set (
const field_basic<T,M>& fh,
const level_set_option& opt)
{
typedef geo_element::size_type size_type;
std::vector<size_type> bnd_dom_ie_list;
disarray<size_type,M> sid_ie2bnd_ie;
return level_set_internal (fh, opt, bnd_dom_ie_list, sid_ie2bnd_ie);
}
// ----------------------------------------------------------------------------
// instanciation in library
// ----------------------------------------------------------------------------
#define _RHEOLEF_instanciation(T,M) \
template geo_basic<T,M> level_set_internal ( \
const field_basic<T,M>&, \
const level_set_option&, \
std::vector<size_t>&, \
disarray<size_t,M>&); \
template geo_basic<T,M> level_set ( \
const field_basic<T,M>&, \
const level_set_option&);
_RHEOLEF_instanciation(Float,sequential)
#ifdef _RHEOLEF_HAVE_MPI
_RHEOLEF_instanciation(Float,distributed)
#endif // _RHEOLEF_HAVE_MPI
} // namespace
|