1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
|
///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
///
/// =========================================================================
#include "rheolef/geo_domain.h"
#include "rheolef/test.h"
namespace rheolef {
// --------------------------------------------------------------------------
// 1. cstors
// --------------------------------------------------------------------------
template <class T, class M>
test_rep<T,M>::test_rep (const space_type& V)
: _V(V),
_fops(),
_is_inside_on_local_sides(false),
_is_on_band(false),
_gh()
{
}
template <class T, class M>
test_rep<T,M>::test_rep (const test_rep<T,M>& x)
: _V (x._V),
_fops (x._fops),
_is_inside_on_local_sides (x._is_inside_on_local_sides),
_is_on_band (x._is_on_band),
_gh (x._gh)
{
trace_macro ("*** PHYSICAL COPY OF TEST_REP ***");
}
template <class T, class M>
test_rep<T,M>&
test_rep<T,M>::operator= (const test_rep<T,M>& x)
{
trace_macro ("*** PHYSICAL ASSIGN OF TEST_REP ***");
_V = x._V;
_fops = x._fops;
_is_inside_on_local_sides = x._is_inside_on_local_sides;
_is_on_band = x._is_on_band;
_gh = x._gh;
return *this;
}
// --------------------------------------------------------------------------
// 2. initializers
// --------------------------------------------------------------------------
template <class T, class M>
void
test_rep<T,M>::initialize (
const piola_on_pointset<float_type>& pops,
const integrate_option& iopt)
{
_is_on_band = false;
_is_inside_on_local_sides = iopt._is_inside_on_local_sides;
_fops.initialize (get_vf_space().get_basis(), pops);
}
template <class T, class M>
void
test_rep<T,M>::initialize (
const space_basic<float_type,memory_type>& Xh,
const piola_on_pointset<float_type>& pops,
const integrate_option& iopt)
{
_is_on_band = false;
_fops.initialize (get_vf_space().get_basis(), pops);
}
template <class T, class M>
void
test_rep<T,M>::initialize (
const band_basic<float_type,M>& gh,
const piola_on_pointset<float_type>& pops,
const integrate_option& iopt)
{
_is_on_band = true;
_gh = gh;
_fops.initialize (get_vf_space().get_basis(), pops);
}
// ----------------------------------------------------------------------------
// 3. band : specific cases
// ----------------------------------------------------------------------------
template <class T, class M, class Value, details::differentiate_option::type Diff>
struct evaluate_band_continued {
void operator() (
const test_rep<T,M>& obj,
const geo_basic<T,M>& omega_K,
const Eigen::Matrix<piola<T>,Eigen::Dynamic,1>& piola,
const reference_element& hat_K,
const reference_element& tilde_L,
const std::vector<size_t>& dis_inod_K,
const std::vector<size_t>& dis_inod_L,
const details::differentiate_option& gopt,
Eigen::Matrix<Value,Eigen::Dynamic,Eigen::Dynamic>& value) const
{
fatal_macro ("on band: unexpected call to differential operator (id="<<Diff<<")");
}
};
template <class T, class M, class Value>
struct evaluate_band_continued<T,M,Value,details::differentiate_option::none> {
void operator() (
const test_rep<T,M>& obj,
const geo_basic<T,M>& omega_K,
const Eigen::Matrix<piola<T>,Eigen::Dynamic,1>& piola,
const reference_element& hat_K,
const reference_element& tilde_L,
const std::vector<size_t>& dis_inod_K,
const std::vector<size_t>& dis_inod_L,
const details::differentiate_option& gopt,
Eigen::Matrix<Value,Eigen::Dynamic,Eigen::Dynamic>& value) const
{
Eigen::Matrix<Value,Eigen::Dynamic,1> value_i;
size_t loc_nnod = value.rows();
for (size_t loc_inod = 0; loc_inod < loc_nnod; ++loc_inod) {
point_basic<T> tilde_xi = inverse_piola_transformation (obj._gh.band(), tilde_L, dis_inod_L, piola[loc_inod].F);
obj._fops.get_basis_on_pointset().get_basis().evaluate (tilde_L, tilde_xi, value_i);
value.row(loc_inod) = value_i.transpose();
}
}
};
// TODO: DVT_CLEAN_TEST_FEM_DG_BAND regrouper dans fem_on_pointset
template <class T, class GradValue>
static
void
band_grad_post (
const tensor_basic<T>& invDF,
const tensor_basic<T>& P,
const details::differentiate_option& gopt,
const GradValue& hat_grad_u,
GradValue& grad_u)
{
fatal_macro("band_grad_post: unsupported gradient type: "<<typename_macro(GradValue));
}
template <class T>
static
void
band_grad_post (
const tensor_basic<T>& invDF,
const tensor_basic<T>& P,
const details::differentiate_option& gopt,
const point_basic<T>& tilde_grad_u,
point_basic<T>& grad_u)
{
grad_u = invDF.trans_mult (tilde_grad_u); // TODO: DVT_OPTIM_2D
if (gopt.surfacic) {
grad_u = P.trans_mult (grad_u); // TODO: DVT_OPTIM_2D
}
}
template <class T>
static
void
band_grad_post (
const tensor_basic<T>& invDF,
const tensor_basic<T>& P,
const details::differentiate_option& gopt,
const tensor_basic<T>& tilde_grad_u,
tensor_basic<T>& grad_u)
{
grad_u = tilde_grad_u*invDF; // TODO: DVT_OPTIM_2D
if (gopt.symmetrized) {
grad_u = (grad_u + trans(grad_u))/2;
}
if (gopt.surfacic) {
if (! gopt.symmetrized) {
grad_u = grad_u*P;
} else {
grad_u = P*grad_u*P;
}
}
}
// ----------------------------------------------
// grad evaluate on band
// ----------------------------------------------
/*
Let F be the Piola transformation from the reference element:
F : hat_K --> K
hat_x --> x = F(hat_x)
Then the gradient of a basis function u defined on K writes:
grad(u)(xq) = DF^{-T}*hat_grad(hat_u)(hat_xq)
When we are working with K as a side of a banded level set surface {phi(x)=0},
then things are more complex.
Let
L in Lambda : a element of the bounding box Lambda
K in Omega : a side of the surface Omega, included in L, as K = L inter {phi(x)=0}.
Let the two Piola transformations from the reference elements:
F : tilde_L --> L
tilde_x --> x = F(tilde_x)
G : hat_K --> K
hat_x --> x = G(hat_x)
Let u is a basis function on L: it is defined over tilde_L as u_tilde:
u(x) = tilde_u (F^{-1}(x)) for all x in K
The quadrature formula is defined in hat_K with integration point hat_xq and weights hat_wq.
Thus, integration point hat_xq may be transformed via F^{-1} o G.
Then, for x=xq=G(hat_xq) :
u(G(hat_xq)) = tilde_u(F^{-1}(G(hat_xq)))
Its derivative expresses with a product of the jacobian DF^-T(tilde_x) :
grad(u)(x) = DF^-T (F^{-1}(x)) grad(u)(F^{-1}(x)) for all x in K
and then, for x=xq=G(hat_xq)
grad(u)(G(hat_xq)) = DF^-T (F^{-1}(G(hat_xq))) grad(u)(F^{-1}(G(hat_xq)))
*/
template <class T, class M, class Value>
struct evaluate_band_continued<T,M,Value,details::differentiate_option::gradient> {
void operator() (
const test_rep<T,M>& obj,
const geo_basic<T,M>& omega_K,
const Eigen::Matrix<piola<T>,Eigen::Dynamic,1>& piola,
const reference_element& hat_K,
const reference_element& tilde_L,
const std::vector<size_t>& dis_inod_K,
const std::vector<size_t>& dis_inod_L,
const details::differentiate_option& gopt,
Eigen::Matrix<Value,Eigen::Dynamic,Eigen::Dynamic>& value) const
{
Eigen::Matrix<Value,Eigen::Dynamic,1> value_i;
Eigen::Matrix<tensor_basic<T>,Eigen::Dynamic,1> DG;
if (gopt.surfacic) {
jacobian_piola_transformation (obj._gh.level_set(), obj._fops.get_piola_on_pointset().get_basis_on_pointset(), hat_K, dis_inod_K, DG);
}
size_t d = omega_K.dimension();
Eigen::Matrix<point_basic<T>,Eigen::Dynamic,1> x;
Eigen::Matrix<Value,Eigen::Dynamic,1> tilde_value_i;
piola_transformation (obj._gh.level_set(), obj._fops.get_piola_on_pointset().get_basis_on_pointset(), hat_K, dis_inod_K, x);
size_t loc_nnod = value.rows();
size_t loc_ndof = value.cols();
for (size_t loc_inod = 0; loc_inod < loc_nnod; ++loc_inod) {
// tilde_x = F_L^{-1}(G_K(hat_x))
point_basic<T> tilde_xi = inverse_piola_transformation (obj._gh.band(), tilde_L, dis_inod_L, x[loc_inod]);
// tilde_value_i: tilde_grad_u (tilde_xi)
obj._fops.get_basis_on_pointset().get_basis().grad_evaluate (tilde_L, tilde_xi, tilde_value_i);
// grad_u(xi) = DF^{-T}(tilde_xi)*tilde_grad_u(tilde_xi)
tensor_basic<T> DF;
tensor_basic<T> P;
jacobian_piola_transformation (obj._gh.band(), obj._fops.get_piola_on_pointset().get_basis_on_pointset().get_basis(), tilde_L, dis_inod_L, tilde_xi, DF);
tensor_basic<T> invDF = pseudo_inverse_jacobian_piola_transformation (DF, d, tilde_L.dimension());
if (gopt.surfacic) {
// apply also the tangential projection P=(I-n*n)
// grad(u) = P*DF^{-T}*hat_grad(hat_u) = (DF^{-1}*P)^T*hat_grad(hat_u)
map_projector (DG[loc_inod], d, hat_K.dimension(), P);
}
for (size_t loc_jdof = 0; loc_jdof < loc_ndof; ++loc_jdof) {
const Value& hat_grad_u = tilde_value_i [loc_jdof];
Value& grad_u = value (loc_inod, loc_jdof);
band_grad_post (invDF, P, gopt, hat_grad_u, grad_u);
}
}
}
};
// --------------------------------------------------------------------------
// 4. evaluate
// --------------------------------------------------------------------------
// external:
// assembly loop on geo_elements K on a domain omega_K
// give its corresponding element K1 in space.geo
template <class T, class M>
const geo_element&
assembly2space_geo_element (
const geo_basic<T,M>& space_geo,
const geo_basic<T,M>& omega_K,
const geo_element& K_in);
template <class T, class M>
template <class Value, details::differentiate_option::type Diff>
void
test_rep<T,M>::evaluate (
const geo_basic<T,M>& omega_K,
const geo_element& K,
const details::differentiate_option& gopt,
Eigen::Matrix<Value,Eigen::Dynamic,Eigen::Dynamic>& value) const
{
// omega_K is the domaine associated to element K:
// it gives the vertices table for K, required by piola
// ----------------------------------------------------------------
// identify the effective (omega_K,K) that belongs to V.get_geo
// and then evaluate
// ----------------------------------------------------------------
// TODO DVT_CLEAN_TEST_FEM_DG_BAND
if (!_is_on_band) {
bool use_dom2bgd = (omega_K.variant() == geo_abstract_base_rep<T>::geo_domain &&
_V.get_geo().variant() != geo_abstract_base_rep<T>::geo_domain);
bool use_bgd2dom = (omega_K.variant() != geo_abstract_base_rep<T>::geo_domain &&
_V.get_geo().variant() == geo_abstract_base_rep<T>::geo_domain);
if (!use_bgd2dom && !use_dom2bgd) {
bool use_dg_on_sides
= omega_K.variant() == geo_abstract_base_rep<T>::geo_domain_indirect &&
1 + K.dimension() == omega_K.get_background_geo().map_dimension() &&
_V.get_basis().is_discontinuous();
if (!use_dg_on_sides) {
// usual case
_fops.template evaluate<M,Value,Diff> (omega_K, K, gopt, value);
} else {
// DG on omega_K="sides" or "boundary" or other d-1 sides domain
// but for a side K, will access to its neighbours L0 & L1 for e.g. dot(grad(u),normal())
// omits "inner(u)" on a sides-domain => assume a boundary side
geo_basic<T,M> omega_L_eff = omega_K.get_background_geo();
size_type L_map_d = K.dimension() + 1;
check_macro (L_map_d == omega_L_eff.map_dimension(),
"unexpected dimension for side S="<<K.name()<<K.dis_ie()<<" in domain "<<omega_L_eff.name());
check_macro (K.master(1) == std::numeric_limits<size_type>::max(),
"unexpected non-boundary side S="<<K.name()<<K.dis_ie()<<" in domain "<<omega_L_eff.name());
size_type L_dis_ie = K.master(0);
check_macro (L_dis_ie != std::numeric_limits<size_type>::max(),
"unexpected isolated side S="<<K.name()<<K.dis_ie());
const geo_element& L_eff = omega_L_eff.dis_get_geo_element (L_map_d, L_dis_ie);
side_information_type sid;
L_eff.get_side_informations (K, sid);
_fops.template evaluate_on_side<M,Value,Diff> (omega_L_eff, L_eff, sid, gopt, value);
}
} else if (use_dom2bgd) {
bool use_dg_on_sides
= omega_K.variant() != geo_abstract_base_rep<T>::geo &&
1 + K.dimension() == _V.get_geo().get_background_geo().map_dimension() &&
_V.get_basis().is_discontinuous();
if (!use_dg_on_sides) {
// usual case
_fops.template evaluate<M,Value,Diff> (omega_K, K, gopt, value);
} else {
// e.g. wh = interpolate(Wh,uh);
// with uh in Vh=space("square",P1d) and Wh=space("square[left]",P1d);
const geo_element& K_space = assembly2space_geo_element (_V.get_geo(), omega_K, K);
size_type L_space_map_d = K_space.dimension() + 1;
check_macro (L_space_map_d == _V.get_geo().map_dimension(),
"unexpected dimension for side S="<<K_space.name()<<K_space.dis_ie()<<" in domain "<<_V.get_geo().name());
check_macro (K_space.master(1) == std::numeric_limits<size_type>::max(),
"unexpected non-boundary side S="<<K_space.name()<<K_space.dis_ie()<<" in domain "<<_V.get_geo().name());
size_type L_space_dis_ie = K_space.master(0);
check_macro (L_space_dis_ie != std::numeric_limits<size_type>::max(),
"unexpected isolated side S="<<K_space.name()<<K_space.dis_ie());
const geo_element& L_space = _V.get_geo().dis_get_geo_element (L_space_map_d, L_space_dis_ie);
side_information_type sid;
L_space.get_side_informations (K_space, sid);
_fops.template evaluate_on_side<M,Value,Diff> (_V.get_geo(), L_space, sid, gopt, value);
}
} else { // use_bdg2dom
// space X (omega);
// space Y (omega["boundary"]);
// trial u(X);
// test v(Y);
// form m = integrate ("boundary", u*v);
// => v is on compacted geo_domain Y.geo but elements K
// during integration process are on domain omega["boundary"]
// => element K need to be replaced by an element in Y.geo
// for computing correctly Y.dis_idof(K)
check_macro (
omega_K.get_background_geo().name() == _V.get_geo().name() ||
omega_K.get_background_geo().name() == _V.get_geo().get_background_geo().name(),
"unexpected integration domain \"" << omega_K.name()
<< "\" based on geo \"" << omega_K.get_background_geo().name()
<< "\" together with a space on geo \"" << _V.get_geo().name()
<< "\" based on geo \"" << _V.get_geo().get_background_geo().name()<<"\"");
geo_basic<T,M> omega_K_eff = _V.get_geo();
const geo_element& K_eff = omega_K_eff.bgd2dom_geo_element (K);
_fops.template evaluate<M,Value,Diff> (omega_K_eff, K_eff, gopt, value);
}
} else { // is_on_band
// find L in the band such that K is the intersected side of L
// as the zero level set isosurface
std::vector<size_type> dis_inod_L;
std::vector<size_type> dis_inod_K;
size_type first_dis_ie = _gh.level_set().sizes().ownership_by_dimension [K.dimension()].first_index();
check_macro (K.dis_ie() >= first_dis_ie, "unexpected intersected side element K.dis_ie="<<K.dis_ie());
size_type K_ie = K.dis_ie() - first_dis_ie;
size_type L_ie = _gh.sid_ie2bnd_ie (K_ie);
const geo_element& L = _gh.band() [L_ie];
reference_element hat_K = K.variant();
reference_element tilde_L = L.variant();
// use the basis on L, the element from the band that contains the
// intersected side K on the zero level set surface
const piola_fem<T>& pf = _fops.get_basis_on_pointset().get_basis().get_piola_fem();
check_macro (! pf.transform_need_piola(), "band: unsupported piola-based basis");
const Eigen::Matrix<piola<T>,Eigen::Dynamic,1>& piola = _fops.get_piola_on_pointset().get_piola (_gh.level_set(), K);
size_type loc_nnod = piola.size();
size_type loc_ndof = get_vf_space().get_basis().ndof (tilde_L);
value.resize (loc_nnod, loc_ndof);
_gh.level_set().dis_inod (K, dis_inod_K);
_gh.band() .dis_inod (L, dis_inod_L);
evaluate_band_continued<T,M,Value,Diff> eval_band_cont;
eval_band_cont (*this, omega_K, piola, hat_K, tilde_L, dis_inod_K, dis_inod_L, gopt, value);
}
}
// --------------------------------------------------------------------------
// 5. evaluate on side
// --------------------------------------------------------------------------
template <class T, class M>
template <class Value, details::differentiate_option::type Diff>
void
test_rep<T,M>::evaluate_on_side (
const geo_basic<T,M>& omega_K,
const geo_element& K,
const side_information_type& sid,
const details::differentiate_option& gopt,
Eigen::Matrix<Value,Eigen::Dynamic,Eigen::Dynamic>& value) const
{
size_type space_map_d = get_vf_space().get_geo().map_dimension();
// TODO DVT_CLEAN_TEST_FEM_DG_BAND
bool is_broken = get_vf_space().get_geo().is_broken() && space_map_d + 1 == K.dimension();
if (!_is_on_band) {
if (!is_broken) {
_fops.template evaluate_on_side<M,Value,Diff> (omega_K, K, sid, gopt, value);
} else { // is_broken: _is_inside_on_local_sides
check_macro(_is_inside_on_local_sides, "unexpected broken case");
size_type isid = sid.loc_isid;
size_type dis_isid = (K.dimension() == 1) ? K[isid] : (K.dimension() == 2) ? K.edge(isid) : K.face(isid);
const geo_element& S = omega_K.dis_get_geo_element (space_map_d, dis_isid);
bool have_bgd_dom = get_vf_space().get_geo().variant() == geo_abstract_base_rep<T>::geo_domain && get_vf_space().get_geo().name() != omega_K.name();
const geo_element* dom_S_ptr = (!have_bgd_dom) ? &S : &(get_vf_space().get_geo().bgd2dom_geo_element(S));
const geo_element& dom_S = *dom_S_ptr;
Eigen::Matrix<Value,Eigen::Dynamic,Eigen::Dynamic> value_sid;
_fops.template evaluate<M,Value,Diff> (omega_K, dom_S, gopt, value_sid);
// next, locally assembly value_sid into value
reference_element hat_K = K;
size_type loc_nnod = value_sid.rows();
size_type loc_ndof = 0;
size_type loc_isid_ndof = 0;
size_type start_loc_isid_idof = 0;
for (size_type jsid = 0, nsid = hat_K.n_side(); jsid < nsid; ++jsid) {
reference_element hat_Sj = hat_K.side(jsid);
size_type loc_jsid_ndof = get_vf_space().get_basis().ndof (hat_Sj);
if (jsid == isid) {
start_loc_isid_idof = loc_ndof;
loc_isid_ndof = loc_jsid_ndof;
}
loc_ndof += loc_jsid_ndof;
}
value.resize (loc_nnod, loc_ndof);
value.fill (Value());
for (size_type loc_isid_jdof = 0; loc_isid_jdof < loc_isid_ndof; ++loc_isid_jdof) {
size_type loc_jdof = start_loc_isid_idof + loc_isid_jdof;
for (size_type loc_inod = 0; loc_inod < loc_nnod; ++loc_inod) {
value(loc_inod,loc_jdof) = value_sid (loc_inod, loc_isid_jdof);
}
}
}
} else {
check_macro (!_is_on_band, "evaluate_on_side: not yet on band");
}
}
// ----------------------------------------------
// 6. local dg merge dofs on an internal side
// ----------------------------------------------
template <class T, class M>
template <class Value>
void
test_rep<T,M>::local_dg_merge_on_side (
const geo_basic<T,M>& omega_K,
const geo_element& S,
const geo_element& K0,
const geo_element& K1,
const Eigen::Matrix<Value,Eigen::Dynamic,Eigen::Dynamic>& value0,
const Eigen::Matrix<Value,Eigen::Dynamic,Eigen::Dynamic>& value1,
Eigen::Matrix<Value,Eigen::Dynamic,Eigen::Dynamic>& value) const
{
check_macro (value0.rows() == value1.rows(), "invalid node number");
size_type loc_nnod = value0.rows();
size_type loc_ndof0 = value0.cols();
size_type loc_ndof1 = value1.cols();
value.resize (loc_nnod, loc_ndof0 + loc_ndof1);
for (size_type loc_inod = 0; loc_inod < loc_nnod; ++loc_inod) {
for (size_type loc_idof = 0; loc_idof < loc_ndof0; ++loc_idof) {
value (loc_inod,loc_idof) = value0 (loc_inod,loc_idof);
}
for (size_type loc_idof = 0; loc_idof < loc_ndof1; ++loc_idof) {
value (loc_inod,loc_ndof0+loc_idof) = value1 (loc_inod,loc_idof); // TODO: DVT_EIGEN_BLAS2
}
}
}
// ----------------------------------------------------------------------------
// instanciation in library
// ----------------------------------------------------------------------------
#define _RHEOLEF_instanciation_value_diff(T,M,Value,Diff) \
template void test_rep<T,M>::evaluate<Value,Diff> ( \
const geo_basic<T,M>& omega_K, \
const geo_element& K, \
const details::differentiate_option& gopt, \
Eigen::Matrix<Value,Eigen::Dynamic,Eigen::Dynamic>& value) const; \
template void test_rep<T,M>::evaluate_on_side<Value,Diff> ( \
const geo_basic<T,M>& omega_K, \
const geo_element& K, \
const side_information_type& sid, \
const details::differentiate_option& gopt, \
Eigen::Matrix<Value,Eigen::Dynamic,Eigen::Dynamic>& value) const; \
#define _RHEOLEF_instanciation_value(T,M,Value) \
template void test_rep<T,M>::local_dg_merge_on_side ( \
const geo_basic<T,M>& omega_K, \
const geo_element& S, \
const geo_element& K0, \
const geo_element& K1, \
const Eigen::Matrix<Value,Eigen::Dynamic,Eigen::Dynamic>& value0, \
const Eigen::Matrix<Value,Eigen::Dynamic,Eigen::Dynamic>& value1, \
Eigen::Matrix<Value,Eigen::Dynamic,Eigen::Dynamic>& value) const; \
_RHEOLEF_instanciation_value_diff(T,M,Value,details::differentiate_option::none) \
_RHEOLEF_instanciation_value_diff(T,M,Value,details::differentiate_option::gradient) \
_RHEOLEF_instanciation_value_diff(T,M,Value,details::differentiate_option::divergence) \
_RHEOLEF_instanciation_value_diff(T,M,Value,details::differentiate_option::curl) \
#define _RHEOLEF_instanciation(T,M) \
template class test_rep<T,M>; \
_RHEOLEF_instanciation_value(T,M,T) \
_RHEOLEF_instanciation_value(T,M,point_basic<T>) \
_RHEOLEF_instanciation_value(T,M,tensor_basic<T>) \
_RHEOLEF_instanciation_value(T,M,tensor3_basic<T>) \
_RHEOLEF_instanciation_value(T,M,tensor4_basic<T>) \
_RHEOLEF_instanciation(Float,sequential)
#ifdef _RHEOLEF_HAVE_MPI
_RHEOLEF_instanciation(Float,distributed)
#endif // _RHEOLEF_HAVE_MPI
} // namespace rheolef
|