1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
|
/*
Ripser: a lean C++ code for computation of Vietoris-Rips persistence barcodes
MIT License
Copyright (c) 2015–2019 Ulrich Bauer
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
You are under no obligation whatsoever to provide any bug fixes, patches, or
upgrades to the features, functionality or performance of the source code
("Enhancements") to anyone; however, if you choose to make your Enhancements
available either publicly, or directly to the author of this software, without
imposing a separate written license agreement for such Enhancements, then you
hereby grant the following license: a non-exclusive, royalty-free perpetual
license to install, use, modify, prepare derivative works, incorporate into
other computer software, distribute, and sublicense such enhancements or
derivative works thereof, in binary and source code form.
*/
//#define USE_COEFFICIENTS
//#define INDICATE_PROGRESS
#define PRINT_PERSISTENCE_PAIRS
//#define USE_GOOGLE_HASHMAP
#include <algorithm>
#include <cassert>
#include <chrono>
#include <cmath>
#include <fstream>
#include <iostream>
#include <numeric>
#include <queue>
#include <sstream>
#include <unordered_map>
#ifdef USE_GOOGLE_HASHMAP
#include <sparsehash/dense_hash_map>
template <class Key, class T, class H, class E>
class hash_map : public google::dense_hash_map<Key, T, H, E> {
public:
explicit hash_map() : google::dense_hash_map<Key, T, H, E>() { this->set_empty_key(-1); }
inline void reserve(size_t hint) { this->resize(hint); }
};
#else
template <class Key, class T, class H, class E>
class hash_map : public std::unordered_map<Key, T, H, E> {};
#endif
typedef float value_t;
typedef int64_t index_t;
typedef uint16_t coefficient_t;
#ifdef INDICATE_PROGRESS
static const std::chrono::milliseconds time_step(40);
#endif
static const std::string clear_line("\r\033[K");
static const size_t num_coefficient_bits = 8;
static const index_t max_simplex_index =
((index_t)1 << (8 * sizeof(index_t) - 1 - num_coefficient_bits)) - 1;
void check_overflow(index_t i) {
if
#ifdef USE_COEFFICIENTS
(i > max_simplex_index)
#else
(i < 0)
#endif
throw std::overflow_error("simplex index " + std::to_string((uint64_t)i) +
" in filtration is larger than maximum index " +
std::to_string(max_simplex_index));
}
class binomial_coeff_table {
std::vector<std::vector<index_t>> B;
public:
binomial_coeff_table(index_t n, index_t k) : B(n + 1) {
for (index_t i = 0; i <= n; ++i) {
B[i].resize(k + 1, 0);
B[i][0] = 1;
for (index_t j = 1; j < std::min(i, k + 1); ++j)
B[i][j] = B[i - 1][j - 1] + B[i - 1][j];
if (i <= k) B[i][i] = 1;
check_overflow(B[i][std::min(i >> 1, k)]);
}
}
index_t operator()(index_t n, index_t k) const {
assert(n < B.size() && k < B[n].size() && n >= k - 1);
return B[n][k];
}
};
bool is_prime(const coefficient_t n) {
if (!(n & 1) || n < 2) return n == 2;
for (coefficient_t p = 3; p <= n / p; p += 2)
if (!(n % p)) return false;
return true;
}
std::vector<coefficient_t> multiplicative_inverse_vector(const coefficient_t m) {
std::vector<coefficient_t> inverse(m);
inverse[1] = 1;
// m = a * (m / a) + m % a
// Multipying with inverse(a) * inverse(m % a):
// 0 = inverse(m % a) * (m / a) + inverse(a) (mod m)
for (coefficient_t a = 2; a < m; ++a) inverse[a] = m - (inverse[m % a] * (m / a)) % m;
return inverse;
}
#ifdef USE_COEFFICIENTS
struct __attribute__((packed)) entry_t {
index_t index : 8 * sizeof(index_t) - num_coefficient_bits;
coefficient_t coefficient : num_coefficient_bits;
entry_t(index_t _index, coefficient_t _coefficient)
: index(_index), coefficient(_coefficient) {}
entry_t(index_t _index) : index(_index), coefficient(0) {}
entry_t() : index(0), coefficient(0) {}
};
static_assert(sizeof(entry_t) == sizeof(index_t), "size of entry_t is not the same as index_t");
entry_t make_entry(index_t i, coefficient_t c) { return entry_t(i, c); }
index_t get_index(const entry_t& e) { return e.index; }
index_t get_coefficient(const entry_t& e) { return e.coefficient; }
void set_coefficient(entry_t& e, const coefficient_t c) { e.coefficient = c; }
std::ostream& operator<<(std::ostream& stream, const entry_t& e) {
stream << get_index(e) << ":" << get_coefficient(e);
return stream;
}
#else
typedef index_t entry_t;
const index_t get_index(const entry_t& i) { return i; }
index_t get_coefficient(const entry_t& i) { return 1; }
entry_t make_entry(index_t _index, coefficient_t _value) { return entry_t(_index); }
void set_coefficient(entry_t& e, const coefficient_t c) {}
#endif
const entry_t& get_entry(const entry_t& e) { return e; }
typedef std::pair<value_t, index_t> diameter_index_t;
value_t get_diameter(const diameter_index_t& i) { return i.first; }
index_t get_index(const diameter_index_t& i) { return i.second; }
typedef std::pair<index_t, value_t> index_diameter_t;
index_t get_index(const index_diameter_t& i) { return i.first; }
value_t get_diameter(const index_diameter_t& i) { return i.second; }
struct diameter_entry_t : std::pair<value_t, entry_t> {
using std::pair<value_t, entry_t>::pair;
diameter_entry_t(value_t _diameter, index_t _index, coefficient_t _coefficient)
: diameter_entry_t(_diameter, make_entry(_index, _coefficient)) {}
diameter_entry_t(const diameter_index_t& _diameter_index, coefficient_t _coefficient)
: diameter_entry_t(get_diameter(_diameter_index),
make_entry(get_index(_diameter_index), _coefficient)) {}
diameter_entry_t(const index_t& _index) : diameter_entry_t(0, _index, 0) {}
};
const entry_t& get_entry(const diameter_entry_t& p) { return p.second; }
entry_t& get_entry(diameter_entry_t& p) { return p.second; }
const index_t get_index(const diameter_entry_t& p) { return get_index(get_entry(p)); }
const coefficient_t get_coefficient(const diameter_entry_t& p) {
return get_coefficient(get_entry(p));
}
const value_t& get_diameter(const diameter_entry_t& p) { return p.first; }
void set_coefficient(diameter_entry_t& p, const coefficient_t c) {
set_coefficient(get_entry(p), c);
}
template <typename Entry> struct greater_diameter_or_smaller_index {
bool operator()(const Entry& a, const Entry& b) {
return (get_diameter(a) > get_diameter(b)) ||
((get_diameter(a) == get_diameter(b)) && (get_index(a) < get_index(b)));
}
};
enum compressed_matrix_layout { LOWER_TRIANGULAR, UPPER_TRIANGULAR };
template <compressed_matrix_layout Layout> struct compressed_distance_matrix {
std::vector<value_t> distances;
std::vector<value_t*> rows;
compressed_distance_matrix(std::vector<value_t>&& _distances)
: distances(std::move(_distances)), rows((1 + std::sqrt(1 + 8 * distances.size())) / 2) {
assert(distances.size() == size() * (size() - 1) / 2);
init_rows();
}
template <typename DistanceMatrix>
compressed_distance_matrix(const DistanceMatrix& mat)
: distances(mat.size() * (mat.size() - 1) / 2), rows(mat.size()) {
init_rows();
for (size_t i = 1; i < size(); ++i)
for (size_t j = 0; j < i; ++j) rows[i][j] = mat(i, j);
}
value_t operator()(const index_t i, const index_t j) const;
size_t size() const { return rows.size(); }
void init_rows();
};
typedef compressed_distance_matrix<LOWER_TRIANGULAR> compressed_lower_distance_matrix;
typedef compressed_distance_matrix<UPPER_TRIANGULAR> compressed_upper_distance_matrix;
template <> void compressed_lower_distance_matrix::init_rows() {
value_t* pointer = &distances[0];
for (size_t i = 1; i < size(); ++i) {
rows[i] = pointer;
pointer += i;
}
}
template <> void compressed_upper_distance_matrix::init_rows() {
value_t* pointer = &distances[0] - 1;
for (size_t i = 0; i < size() - 1; ++i) {
rows[i] = pointer;
pointer += size() - i - 2;
}
}
template <>
value_t compressed_lower_distance_matrix::operator()(const index_t i, const index_t j) const {
return i == j ? 0 : i < j ? rows[j][i] : rows[i][j];
}
template <>
value_t compressed_upper_distance_matrix::operator()(const index_t i, const index_t j) const {
return i == j ? 0 : i > j ? rows[j][i] : rows[i][j];
}
struct sparse_distance_matrix {
std::vector<std::vector<index_diameter_t>> neighbors;
index_t num_edges;
mutable std::vector<std::vector<index_diameter_t>::const_reverse_iterator> neighbor_it;
mutable std::vector<std::vector<index_diameter_t>::const_reverse_iterator> neighbor_end;
sparse_distance_matrix(std::vector<std::vector<index_diameter_t>>&& _neighbors,
index_t _num_edges)
: neighbors(std::move(_neighbors)), num_edges(_num_edges) {}
template <typename DistanceMatrix>
sparse_distance_matrix(const DistanceMatrix& mat, const value_t threshold)
: neighbors(mat.size()), num_edges(0) {
for (size_t i = 0; i < size(); ++i)
for (size_t j = 0; j < size(); ++j)
if (i != j && mat(i, j) <= threshold) {
++num_edges;
neighbors[i].push_back({j, mat(i, j)});
}
}
size_t size() const { return neighbors.size(); }
};
struct euclidean_distance_matrix {
std::vector<std::vector<value_t>> points;
euclidean_distance_matrix(std::vector<std::vector<value_t>>&& _points)
: points(std::move(_points)) {
for (auto p : points) { assert(p.size() == points.front().size()); }
}
value_t operator()(const index_t i, const index_t j) const {
assert(i < points.size());
assert(j < points.size());
return std::sqrt(std::inner_product(
points[i].begin(), points[i].end(), points[j].begin(), value_t(), std::plus<value_t>(),
[](value_t u, value_t v) { return (u - v) * (u - v); }));
}
size_t size() const { return points.size(); }
};
class union_find {
std::vector<index_t> parent;
std::vector<uint8_t> rank;
public:
union_find(const index_t n) : parent(n), rank(n, 0) {
for (index_t i = 0; i < n; ++i) parent[i] = i;
}
index_t find(index_t x) {
index_t y = x, z;
while ((z = parent[y]) != y) y = z;
while ((z = parent[x]) != y) {
parent[x] = y;
x = z;
}
return z;
}
void link(index_t x, index_t y) {
if ((x = find(x)) == (y = find(y))) return;
if (rank[x] > rank[y])
parent[y] = x;
else {
parent[x] = y;
if (rank[x] == rank[y]) ++rank[y];
}
}
};
template <typename T> T begin(std::pair<T, T>& p) { return p.first; }
template <typename T> T end(std::pair<T, T>& p) { return p.second; }
template <typename ValueType> class compressed_sparse_matrix {
std::vector<size_t> bounds;
std::vector<ValueType> entries;
typedef typename std::vector<ValueType>::iterator iterator;
typedef std::pair<iterator, iterator> iterator_pair;
public:
size_t size() const { return bounds.size(); }
iterator_pair subrange(const index_t index) {
return {entries.begin() + (index == 0 ? 0 : bounds[index - 1]),
entries.begin() + bounds[index]};
}
void append_column() { bounds.push_back(entries.size()); }
void push_back(const ValueType e) {
assert(0 < size());
entries.push_back(e);
++bounds.back();
}
};
template <class Predicate>
index_t get_max(index_t top, const index_t bottom, const Predicate pred) {
if (!pred(top)) {
index_t count = top - bottom;
while (count > 0) {
index_t step = count >> 1, mid = top - step;
if (!pred(mid)) {
top = mid - 1;
count -= step + 1;
} else
count = step;
}
}
return top;
}
template <typename DistanceMatrix> class ripser {
const DistanceMatrix dist;
const index_t n, dim_max;
const value_t threshold;
const float ratio;
const coefficient_t modulus;
const binomial_coeff_table binomial_coeff;
const std::vector<coefficient_t> multiplicative_inverse;
mutable std::vector<diameter_entry_t> cofacet_entries;
struct entry_hash {
std::size_t operator()(const entry_t& e) const {
return std::hash<index_t>()(::get_index(e));
}
};
struct equal_index {
bool operator()(const entry_t& e, const entry_t& f) const {
return ::get_index(e) == ::get_index(f);
}
};
typedef hash_map<entry_t, size_t, entry_hash, equal_index> entry_hash_map;
public:
ripser(DistanceMatrix&& _dist, index_t _dim_max, value_t _threshold, float _ratio,
coefficient_t _modulus)
: dist(std::move(_dist)), n(dist.size()),
dim_max(std::min(_dim_max, index_t(dist.size() - 2))), threshold(_threshold),
ratio(_ratio), modulus(_modulus), binomial_coeff(n, dim_max + 2),
multiplicative_inverse(multiplicative_inverse_vector(_modulus)) {}
index_t get_max_vertex(const index_t idx, const index_t k, const index_t n) const {
return get_max(n, k - 1, [&](index_t w) -> bool { return (binomial_coeff(w, k) <= idx); });
}
index_t get_edge_index(const index_t i, const index_t j) const {
return binomial_coeff(i, 2) + j;
}
template <typename OutputIterator>
OutputIterator get_simplex_vertices(index_t idx, const index_t dim, index_t n,
OutputIterator out) const {
--n;
for (index_t k = dim + 1; k > 0; --k) {
n = get_max_vertex(idx, k, n);
*out++ = n;
idx -= binomial_coeff(n, k);
}
return out;
}
class simplex_coboundary_enumerator;
void assemble_columns_to_reduce(std::vector<diameter_index_t>& simplices,
std::vector<diameter_index_t>& columns_to_reduce,
entry_hash_map& pivot_column_index, index_t dim) {
#ifdef INDICATE_PROGRESS
std::cerr << clear_line << "assembling columns" << std::flush;
std::chrono::steady_clock::time_point next = std::chrono::steady_clock::now() + time_step;
#endif
--dim;
columns_to_reduce.clear();
std::vector<diameter_index_t> next_simplices;
for (diameter_index_t& simplex : simplices) {
simplex_coboundary_enumerator cofacets(diameter_entry_t(simplex, 1), dim, *this);
while (cofacets.has_next(false)) {
#ifdef INDICATE_PROGRESS
if (std::chrono::steady_clock::now() > next) {
std::cerr << clear_line << "assembling " << next_simplices.size()
<< " columns (processing " << std::distance(&simplices[0], &simplex)
<< "/" << simplices.size() << " simplices)" << std::flush;
next = std::chrono::steady_clock::now() + time_step;
}
#endif
auto cofacet = cofacets.next();
if (get_diameter(cofacet) <= threshold) {
next_simplices.push_back({get_diameter(cofacet), get_index(cofacet)});
if (pivot_column_index.find(get_entry(cofacet)) == pivot_column_index.end())
columns_to_reduce.push_back({get_diameter(cofacet), get_index(cofacet)});
}
}
}
simplices.swap(next_simplices);
#ifdef INDICATE_PROGRESS
std::cerr << clear_line << "sorting " << columns_to_reduce.size() << " columns"
<< std::flush;
#endif
std::sort(columns_to_reduce.begin(), columns_to_reduce.end(),
greater_diameter_or_smaller_index<diameter_index_t>());
#ifdef INDICATE_PROGRESS
std::cerr << clear_line << std::flush;
#endif
}
void compute_dim_0_pairs(std::vector<diameter_index_t>& edges,
std::vector<diameter_index_t>& columns_to_reduce) {
#ifdef PRINT_PERSISTENCE_PAIRS
std::cout << "persistence intervals in dim 0:" << std::endl;
#endif
union_find dset(n);
edges = get_edges();
std::sort(edges.rbegin(), edges.rend(),
greater_diameter_or_smaller_index<diameter_index_t>());
std::vector<index_t> vertices_of_edge(2);
for (auto e : edges) {
get_simplex_vertices(get_index(e), 1, n, vertices_of_edge.rbegin());
index_t u = dset.find(vertices_of_edge[0]), v = dset.find(vertices_of_edge[1]);
if (u != v) {
#ifdef PRINT_PERSISTENCE_PAIRS
if (get_diameter(e) != 0)
std::cout << " [0," << get_diameter(e) << ")" << std::endl;
#endif
dset.link(u, v);
} else
columns_to_reduce.push_back(e);
}
std::reverse(columns_to_reduce.begin(), columns_to_reduce.end());
#ifdef PRINT_PERSISTENCE_PAIRS
for (index_t i = 0; i < n; ++i)
if (dset.find(i) == i) std::cout << " [0, )" << std::endl;
#endif
}
template <typename Column> diameter_entry_t pop_pivot(Column& column) {
diameter_entry_t pivot(-1);
#ifdef USE_COEFFICIENTS
while (!column.empty()) {
if (get_coefficient(pivot) == 0)
pivot = column.top();
else if (get_index(column.top()) != get_index(pivot))
return pivot;
else
set_coefficient(pivot,
(get_coefficient(pivot) + get_coefficient(column.top())) % modulus);
column.pop();
}
return (get_coefficient(pivot) == 0) ? -1 : pivot;
#else
while (!column.empty()) {
pivot = column.top();
column.pop();
if (column.empty() || get_index(column.top()) != get_index(pivot)) return pivot;
column.pop();
}
return -1;
#endif
}
template <typename Column> diameter_entry_t get_pivot(Column& column) {
diameter_entry_t result = pop_pivot(column);
if (get_index(result) != -1) column.push(result);
return result;
}
template <typename Column>
diameter_entry_t init_coboundary_and_get_pivot(const diameter_entry_t simplex,
Column& working_coboundary, const index_t& dim,
entry_hash_map& pivot_column_index) {
bool check_for_emergent_pair = true;
cofacet_entries.clear();
simplex_coboundary_enumerator cofacets(simplex, dim, *this);
while (cofacets.has_next()) {
diameter_entry_t cofacet = cofacets.next();
if (get_diameter(cofacet) <= threshold) {
cofacet_entries.push_back(cofacet);
if (check_for_emergent_pair && (get_diameter(simplex) == get_diameter(cofacet))) {
if (pivot_column_index.find(get_entry(cofacet)) == pivot_column_index.end())
return cofacet;
check_for_emergent_pair = false;
}
}
}
for (auto cofacet : cofacet_entries) working_coboundary.push(cofacet);
return get_pivot(working_coboundary);
}
template <typename Column>
void add_simplex_coboundary(const diameter_entry_t simplex, const index_t& dim,
Column& working_reduction_column, Column& working_coboundary) {
working_reduction_column.push(simplex);
simplex_coboundary_enumerator cofacets(simplex, dim, *this);
while (cofacets.has_next()) {
diameter_entry_t cofacet = cofacets.next();
if (get_diameter(cofacet) <= threshold) working_coboundary.push(cofacet);
}
}
template <typename Column>
void add_coboundary(compressed_sparse_matrix<diameter_entry_t>& reduction_matrix,
const std::vector<diameter_index_t>& columns_to_reduce,
const size_t index_column_to_add, const coefficient_t factor, const size_t& dim,
Column& working_reduction_column, Column& working_coboundary) {
diameter_entry_t column_to_add(columns_to_reduce[index_column_to_add], factor);
add_simplex_coboundary(column_to_add, dim, working_reduction_column, working_coboundary);
for (diameter_entry_t simplex : reduction_matrix.subrange(index_column_to_add)) {
set_coefficient(simplex, get_coefficient(simplex) * factor % modulus);
add_simplex_coboundary(simplex, dim, working_reduction_column, working_coboundary);
}
}
void compute_pairs(const std::vector<diameter_index_t>& columns_to_reduce,
entry_hash_map& pivot_column_index, const index_t dim) {
#ifdef PRINT_PERSISTENCE_PAIRS
std::cout << "persistence intervals in dim " << dim << ":" << std::endl;
#endif
compressed_sparse_matrix<diameter_entry_t> reduction_matrix;
#ifdef INDICATE_PROGRESS
std::chrono::steady_clock::time_point next = std::chrono::steady_clock::now() + time_step;
#endif
for (size_t index_column_to_reduce = 0; index_column_to_reduce < columns_to_reduce.size();
++index_column_to_reduce) {
diameter_entry_t column_to_reduce(columns_to_reduce[index_column_to_reduce], 1);
value_t diameter = get_diameter(column_to_reduce);
reduction_matrix.append_column();
std::priority_queue<diameter_entry_t, std::vector<diameter_entry_t>,
greater_diameter_or_smaller_index<diameter_entry_t>>
working_reduction_column, working_coboundary;
diameter_entry_t pivot = init_coboundary_and_get_pivot(
column_to_reduce, working_coboundary, dim, pivot_column_index);
while (true) {
#ifdef INDICATE_PROGRESS
if (std::chrono::steady_clock::now() > next) {
std::cerr << clear_line << "reducing column " << index_column_to_reduce + 1
<< "/" << columns_to_reduce.size() << " (diameter " << diameter << ")"
<< std::flush;
next = std::chrono::steady_clock::now() + time_step;
}
#endif
if (get_index(pivot) != -1) {
auto pair = pivot_column_index.find(get_entry(pivot));
if (pair != pivot_column_index.end()) {
entry_t other_pivot = pair->first;
index_t index_column_to_add = pair->second;
coefficient_t factor =
modulus - get_coefficient(pivot) *
multiplicative_inverse[get_coefficient(other_pivot)] %
modulus;
add_coboundary(reduction_matrix, columns_to_reduce, index_column_to_add,
factor, dim, working_reduction_column, working_coboundary);
pivot = get_pivot(working_coboundary);
} else {
#ifdef PRINT_PERSISTENCE_PAIRS
value_t death = get_diameter(pivot);
if (death > diameter * ratio) {
#ifdef INDICATE_PROGRESS
std::cerr << clear_line << std::flush;
#endif
std::cout << " [" << diameter << "," << death << ")" << std::endl;
}
#endif
pivot_column_index.insert({get_entry(pivot), index_column_to_reduce});
while (true) {
diameter_entry_t e = pop_pivot(working_reduction_column);
if (get_index(e) == -1) break;
assert(get_coefficient(e) > 0);
reduction_matrix.push_back(e);
}
break;
}
} else {
#ifdef PRINT_PERSISTENCE_PAIRS
#ifdef INDICATE_PROGRESS
std::cerr << clear_line << std::flush;
#endif
std::cout << " [" << diameter << ", )" << std::endl;
#endif
break;
}
}
}
#ifdef INDICATE_PROGRESS
std::cerr << clear_line << std::flush;
#endif
}
std::vector<diameter_index_t> get_edges();
void compute_barcodes() {
std::vector<diameter_index_t> simplices, columns_to_reduce;
compute_dim_0_pairs(simplices, columns_to_reduce);
for (index_t dim = 1; dim <= dim_max; ++dim) {
entry_hash_map pivot_column_index;
pivot_column_index.reserve(columns_to_reduce.size());
compute_pairs(columns_to_reduce, pivot_column_index, dim);
if (dim < dim_max)
assemble_columns_to_reduce(simplices, columns_to_reduce, pivot_column_index,
dim + 1);
}
}
};
template <> class ripser<compressed_lower_distance_matrix>::simplex_coboundary_enumerator {
index_t idx_below, idx_above, v, k;
std::vector<index_t> vertices;
const diameter_entry_t simplex;
const coefficient_t modulus;
const compressed_lower_distance_matrix& dist;
const binomial_coeff_table& binomial_coeff;
public:
simplex_coboundary_enumerator(const diameter_entry_t _simplex, const index_t _dim,
const ripser& parent)
: idx_below(get_index(_simplex)), idx_above(0), v(parent.n - 1), k(_dim + 1),
vertices(_dim + 1), simplex(_simplex), modulus(parent.modulus), dist(parent.dist),
binomial_coeff(parent.binomial_coeff) {
parent.get_simplex_vertices(get_index(_simplex), _dim, parent.n, vertices.rbegin());
}
bool has_next(bool all_cofacets = true) {
return (v >= k && (all_cofacets || binomial_coeff(v, k) > idx_below));
}
diameter_entry_t next() {
while ((binomial_coeff(v, k) <= idx_below)) {
idx_below -= binomial_coeff(v, k);
idx_above += binomial_coeff(v, k + 1);
--v;
--k;
assert(k != -1);
}
value_t cofacet_diameter = get_diameter(simplex);
for (index_t w : vertices) cofacet_diameter = std::max(cofacet_diameter, dist(v, w));
index_t cofacet_index = idx_above + binomial_coeff(v--, k + 1) + idx_below;
coefficient_t cofacet_coefficient =
(k & 1 ? modulus - 1 : 1) * get_coefficient(simplex) % modulus;
return diameter_entry_t(cofacet_diameter, cofacet_index, cofacet_coefficient);
}
};
template <> class ripser<sparse_distance_matrix>::simplex_coboundary_enumerator {
const ripser& parent;
index_t idx_below, idx_above, k;
std::vector<index_t> vertices;
const diameter_entry_t simplex;
const coefficient_t modulus;
const sparse_distance_matrix& dist;
const binomial_coeff_table& binomial_coeff;
std::vector<std::vector<index_diameter_t>::const_reverse_iterator>& neighbor_it;
std::vector<std::vector<index_diameter_t>::const_reverse_iterator>& neighbor_end;
index_diameter_t neighbor;
public:
simplex_coboundary_enumerator(const diameter_entry_t _simplex, const index_t _dim,
const ripser& _parent)
: parent(_parent), idx_below(get_index(_simplex)), idx_above(0), k(_dim + 1),
vertices(_dim + 1), simplex(_simplex), modulus(parent.modulus), dist(parent.dist),
binomial_coeff(parent.binomial_coeff), neighbor_it(dist.neighbor_it),
neighbor_end(dist.neighbor_end) {
neighbor_it.clear();
neighbor_end.clear();
parent.get_simplex_vertices(idx_below, _dim, parent.n, vertices.rbegin());
for (auto v : vertices) {
neighbor_it.push_back(dist.neighbors[v].rbegin());
neighbor_end.push_back(dist.neighbors[v].rend());
}
}
bool has_next(bool all_cofacets = true) {
for (auto &it0 = neighbor_it[0], &end0 = neighbor_end[0]; it0 != end0; ++it0) {
neighbor = *it0;
for (size_t idx = 1; idx < neighbor_it.size(); ++idx) {
auto &it = neighbor_it[idx], end = neighbor_end[idx];
while (get_index(*it) > get_index(neighbor))
if (++it == end) return false;
if (get_index(*it) != get_index(neighbor))
goto continue_outer;
else
neighbor = std::max(neighbor, *it);
}
while (k > 0 && vertices[k - 1] > get_index(neighbor)) {
if (!all_cofacets) return false;
idx_below -= binomial_coeff(vertices[k - 1], k);
idx_above += binomial_coeff(vertices[k - 1], k + 1);
--k;
}
return true;
continue_outer:;
}
return false;
}
diameter_entry_t next() {
++neighbor_it[0];
value_t cofacet_diameter = std::max(get_diameter(simplex), get_diameter(neighbor));
index_t cofacet_index = idx_above + binomial_coeff(get_index(neighbor), k + 1) + idx_below;
coefficient_t cofacet_coefficient =
(k & 1 ? modulus - 1 : 1) * get_coefficient(simplex) % modulus;
return diameter_entry_t(cofacet_diameter, cofacet_index, cofacet_coefficient);
}
};
template <> std::vector<diameter_index_t> ripser<compressed_lower_distance_matrix>::get_edges() {
std::vector<diameter_index_t> edges;
std::vector<index_t> vertices(2);
for (index_t index = binomial_coeff(n, 2); index-- > 0;) {
get_simplex_vertices(index, 1, dist.size(), vertices.rbegin());
value_t length = dist(vertices[0], vertices[1]);
if (length <= threshold) edges.push_back({length, index});
}
return edges;
}
template <> std::vector<diameter_index_t> ripser<sparse_distance_matrix>::get_edges() {
std::vector<diameter_index_t> edges;
for (index_t i = 0; i < n; ++i)
for (auto n : dist.neighbors[i]) {
index_t j = get_index(n);
if (i > j) edges.push_back({get_diameter(n), get_edge_index(i, j)});
}
return edges;
}
enum file_format {
LOWER_DISTANCE_MATRIX,
UPPER_DISTANCE_MATRIX,
DISTANCE_MATRIX,
POINT_CLOUD,
DIPHA,
SPARSE,
BINARY
};
static const uint16_t endian_check(0xff00);
static const bool is_big_endian = *reinterpret_cast<const uint8_t*>(&endian_check);
template <typename T> T read(std::istream& input_stream) {
T result;
char* p = reinterpret_cast<char*>(&result);
if (input_stream.read(p, sizeof(T)).gcount() != sizeof(T)) return T();
if (is_big_endian) std::reverse(p, p + sizeof(T));
return result;
}
compressed_lower_distance_matrix read_point_cloud(std::istream& input_stream) {
std::vector<std::vector<value_t>> points;
std::string line;
value_t value;
while (std::getline(input_stream, line)) {
std::vector<value_t> point;
std::istringstream s(line);
while (s >> value) {
point.push_back(value);
s.ignore();
}
if (!point.empty()) points.push_back(point);
assert(point.size() == points.front().size());
}
euclidean_distance_matrix eucl_dist(std::move(points));
index_t n = eucl_dist.size();
std::cout << "point cloud with " << n << " points in dimension "
<< eucl_dist.points.front().size() << std::endl;
std::vector<value_t> distances;
for (int i = 0; i < n; ++i)
for (int j = 0; j < i; ++j) distances.push_back(eucl_dist(i, j));
return compressed_lower_distance_matrix(std::move(distances));
}
sparse_distance_matrix read_sparse_distance_matrix(std::istream& input_stream) {
std::vector<std::vector<index_diameter_t>> neighbors;
index_t num_edges = 0;
std::string line;
while (std::getline(input_stream, line)) {
std::istringstream s(line);
size_t i, j;
value_t value;
s >> i;
s >> j;
s >> value;
if (i != j) {
neighbors.resize(std::max({neighbors.size(), i + 1, j + 1}));
neighbors[i].push_back({j, value});
neighbors[j].push_back({i, value});
++num_edges;
}
}
for (size_t i = 0; i < neighbors.size(); ++i)
std::sort(neighbors[i].begin(), neighbors[i].end());
return sparse_distance_matrix(std::move(neighbors), num_edges);
}
compressed_lower_distance_matrix read_lower_distance_matrix(std::istream& input_stream) {
std::vector<value_t> distances;
value_t value;
while (input_stream >> value) {
distances.push_back(value);
input_stream.ignore();
}
return compressed_lower_distance_matrix(std::move(distances));
}
compressed_lower_distance_matrix read_upper_distance_matrix(std::istream& input_stream) {
std::vector<value_t> distances;
value_t value;
while (input_stream >> value) {
distances.push_back(value);
input_stream.ignore();
}
return compressed_lower_distance_matrix(compressed_upper_distance_matrix(std::move(distances)));
}
compressed_lower_distance_matrix read_distance_matrix(std::istream& input_stream) {
std::vector<value_t> distances;
std::string line;
value_t value;
for (int i = 0; std::getline(input_stream, line); ++i) {
std::istringstream s(line);
for (int j = 0; j < i && s >> value; ++j) {
distances.push_back(value);
s.ignore();
}
}
return compressed_lower_distance_matrix(std::move(distances));
}
compressed_lower_distance_matrix read_dipha(std::istream& input_stream) {
if (read<int64_t>(input_stream) != 8067171840) {
std::cerr << "input is not a Dipha file (magic number: 8067171840)" << std::endl;
exit(-1);
}
if (read<int64_t>(input_stream) != 7) {
std::cerr << "input is not a Dipha distance matrix (file type: 7)" << std::endl;
exit(-1);
}
index_t n = read<int64_t>(input_stream);
std::vector<value_t> distances;
for (int i = 0; i < n; ++i)
for (int j = 0; j < n; ++j)
if (i > j)
distances.push_back(read<double>(input_stream));
else
read<double>(input_stream);
return compressed_lower_distance_matrix(std::move(distances));
}
compressed_lower_distance_matrix read_binary(std::istream& input_stream) {
std::vector<value_t> distances;
while (!input_stream.eof()) distances.push_back(read<value_t>(input_stream));
return compressed_lower_distance_matrix(std::move(distances));
}
compressed_lower_distance_matrix read_file(std::istream& input_stream, const file_format format) {
switch (format) {
case LOWER_DISTANCE_MATRIX:
return read_lower_distance_matrix(input_stream);
case UPPER_DISTANCE_MATRIX:
return read_upper_distance_matrix(input_stream);
case DISTANCE_MATRIX:
return read_distance_matrix(input_stream);
case POINT_CLOUD:
return read_point_cloud(input_stream);
case DIPHA:
return read_dipha(input_stream);
default:
return read_binary(input_stream);
}
}
void print_usage_and_exit(int exit_code) {
std::cerr
<< "Usage: "
<< "ripser "
<< "[options] [filename]" << std::endl
<< std::endl
<< "Options:" << std::endl
<< std::endl
<< " --help print this screen" << std::endl
<< " --format use the specified file format for the input. Options are:"
<< std::endl
<< " lower-distance (lower triangular distance matrix; default)"
<< std::endl
<< " upper-distance (upper triangular distance matrix)" << std::endl
<< " distance (full distance matrix)" << std::endl
<< " point-cloud (point cloud in Euclidean space)" << std::endl
<< " dipha (distance matrix in DIPHA file format)" << std::endl
<< " sparse (sparse distance matrix in sparse triplet format)"
<< std::endl
<< " binary (lower triangular distance matrix in binary format)"
<< std::endl
<< " --dim <k> compute persistent homology up to dimension k" << std::endl
<< " --threshold <t> compute Rips complexes up to diameter t" << std::endl
#ifdef USE_COEFFICIENTS
<< " --modulus <p> compute homology with coefficients in the prime field Z/pZ"
<< std::endl
#endif
<< " --ratio <r> only show persistence pairs with death/birth ratio > r" << std::endl
<< std::endl;
exit(exit_code);
}
int main(int argc, char** argv) {
const char* filename = nullptr;
file_format format = DISTANCE_MATRIX;
index_t dim_max = 1;
value_t threshold = std::numeric_limits<value_t>::max();
float ratio = 1;
coefficient_t modulus = 2;
for (index_t i = 1; i < argc; ++i) {
const std::string arg(argv[i]);
if (arg == "--help") {
print_usage_and_exit(0);
} else if (arg == "--dim") {
std::string parameter = std::string(argv[++i]);
size_t next_pos;
dim_max = std::stol(parameter, &next_pos);
if (next_pos != parameter.size()) print_usage_and_exit(-1);
} else if (arg == "--threshold") {
std::string parameter = std::string(argv[++i]);
size_t next_pos;
threshold = std::stof(parameter, &next_pos);
if (next_pos != parameter.size()) print_usage_and_exit(-1);
} else if (arg == "--ratio") {
std::string parameter = std::string(argv[++i]);
size_t next_pos;
ratio = std::stof(parameter, &next_pos);
if (next_pos != parameter.size()) print_usage_and_exit(-1);
} else if (arg == "--format") {
std::string parameter = std::string(argv[++i]);
if (parameter.rfind("lower", 0) == 0)
format = LOWER_DISTANCE_MATRIX;
else if (parameter.rfind("upper", 0) == 0)
format = UPPER_DISTANCE_MATRIX;
else if (parameter.rfind("dist", 0) == 0)
format = DISTANCE_MATRIX;
else if (parameter.rfind("point", 0) == 0)
format = POINT_CLOUD;
else if (parameter == "dipha")
format = DIPHA;
else if (parameter == "sparse")
format = SPARSE;
else if (parameter == "binary")
format = BINARY;
else
print_usage_and_exit(-1);
#ifdef USE_COEFFICIENTS
} else if (arg == "--modulus") {
std::string parameter = std::string(argv[++i]);
size_t next_pos;
modulus = std::stol(parameter, &next_pos);
if (next_pos != parameter.size() || !is_prime(modulus)) print_usage_and_exit(-1);
#endif
} else {
if (filename) { print_usage_and_exit(-1); }
filename = argv[i];
}
}
std::ifstream file_stream(filename);
if (filename && file_stream.fail()) {
std::cerr << "couldn't open file " << filename << std::endl;
exit(-1);
}
if (format == SPARSE) {
sparse_distance_matrix dist =
read_sparse_distance_matrix(filename ? file_stream : std::cin);
std::cout << "sparse distance matrix with " << dist.size() << " points and "
<< dist.num_edges << "/" << (dist.size() * (dist.size() - 1)) / 2 << " entries"
<< std::endl;
ripser<sparse_distance_matrix>(std::move(dist), dim_max, threshold, ratio, modulus)
.compute_barcodes();
} else {
compressed_lower_distance_matrix dist =
read_file(filename ? file_stream : std::cin, format);
value_t min = std::numeric_limits<value_t>::infinity(),
max = -std::numeric_limits<value_t>::infinity(), max_finite = max;
int num_edges = 0;
if (threshold == std::numeric_limits<value_t>::max()) {
value_t enclosing_radius = std::numeric_limits<value_t>::infinity();
for (size_t i = 0; i < dist.size(); ++i) {
value_t r_i = -std::numeric_limits<value_t>::infinity();
for (size_t j = 0; j < dist.size(); ++j) r_i = std::max(r_i, dist(i, j));
enclosing_radius = std::min(enclosing_radius, r_i);
}
threshold = enclosing_radius;
}
for (auto d : dist.distances) {
min = std::min(min, d);
max = std::max(max, d);
max_finite =
d != std::numeric_limits<value_t>::infinity() ? std::max(max, d) : max_finite;
if (d <= threshold) ++num_edges;
}
std::cout << "value range: [" << min << "," << max_finite << "]" << std::endl;
if (threshold >= max) {
std::cout << "distance matrix with " << dist.size() << " points" << std::endl;
ripser<compressed_lower_distance_matrix>(std::move(dist), dim_max, threshold, ratio,
modulus)
.compute_barcodes();
} else {
std::cout << "sparse distance matrix with " << dist.size() << " points and "
<< num_edges << "/" << (dist.size() * dist.size() - 1) / 2 << " entries"
<< std::endl;
ripser<sparse_distance_matrix>(sparse_distance_matrix(std::move(dist), threshold),
dim_max, threshold, ratio, modulus)
.compute_barcodes();
}
exit(0);
}
}
|