1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2006-2007 Benoit Jacob <jacob@math.jussieu.fr>
//
// Eigen is free software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the Free Software
// Foundation; either version 2 or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
// details.
//
// You should have received a copy of the GNU General Public License along
// with Eigen; if not, write to the Free Software Foundation, Inc., 51
// Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
//
// As a special exception, if other files instantiate templates or use macros
// or inline functions from this file, or you compile this file and link it
// with other works to produce a work based on this file, this file does not
// by itself cause the resulting work to be covered by the GNU General Public
// License. This exception does not invalidate any other reasons why a work
// based on this file might be covered by the GNU General Public License.
/** \file vector.h
* \brief Vector and VectorX class templates
*/
#ifndef EIGEN_VECTOR_H
#define EIGEN_VECTOR_H
#include "vectorbase.h"
namespace Eigen
{
/** \ingroup fixedsize
*
* \ingroup vectors
*
* \brief Fixed-size vector.
*
* A class for fixed-size vectors (for linear algebra).
* Thus, a Vector<T,Size> is the same
* as a T[Size] array, except that it has convenient operators and methods
* for basic vector math.
*
* The template parameter T is the type of the coords of the vector.
* It can be any type representing either real or complex numbers.
* The template parameter Size is the size of the vector (number of coords).
* The following typedefs are provided to cover the usual cases:
* @code
typedef Vector<double, 2> Vector2d;
typedef Vector<double, 3> Vector3d;
typedef Vector<double, 4> Vector4d;
typedef Vector<float, 2> Vector2f;
typedef Vector<float, 3> Vector3f;
typedef Vector<float, 4> Vector4f;
typedef Vector<std::complex<double>, 2> Vector2cd;
typedef Vector<std::complex<double>, 3> Vector3cd;
typedef Vector<std::complex<double>, 4> Vector4cd;
typedef Vector<std::complex<float>, 2> Vector2cf;
typedef Vector<std::complex<float>, 3> Vector3cf;
typedef Vector<std::complex<float>, 4> Vector4cf;
* @endcode
*
* If you prefer dynamic-size vectors (they are slower), see the VectorX
* class template, which provides exactly the same functionality and API
* in dynamic-size version.
*
* The Vector class template provides all the usual operators and methods
* to manipulate vectors.
*
* Here are some examples of usage of Vector:
* @code
using namespace Eigen;
using namespace std; // we'll use cout for outputting vectors
Vector3d vec1( -1.1, 2.9, 4.3 ); // construct vector vec1 with given coords
double array[3] = { 2.4, 3.1, -0.7 };
Vector3d vec2( array ); // reads the coords of vec2 from array2
vec1 += vec2; // computes the coord-wise sum vec1 + vec2, stores it in vec1
vec1 = vec1 - vec2; // there are also non-assignment operators
vec1 = 0.9 * vec1 + vec2 / 2.6; // you can also multiply/divide by numbers
vec1.x() = vec2.y() // read-write access to the x,y,z,w coords
vec1(2) = -1.4; // Stores the value -1.4 in coord 2 of vec1.
vec1.z() = -1.4; // equivalent to the previous line
cout << vec1 << endl; // outputs vec1
cout << "norm of vec1: " << vec1.norm() << endl;
cout << cross( vec1, vec2 ) << endl; // cross-product
* @endcode
*/
template< typename T, int Size >
class Vector : public VectorBase< T, Vector<T, Size> >
{
friend class VectorBase< T, Vector<T, Size> >;
typedef class VectorBase< T, Vector<T, Size> > Base;
private:
/** \internal
* Returns false. A Vector<T,Size> doesn't have dynamic size.
*/
bool _hasDynamicSize() const
{ return false; }
/** \internal
* Returns the size of the vector.
*/
int _size() const
{ return Size; }
/** \internal
* Does nothing. A Vector<T,Size> can't be resized.
*
* if newsize != size(), a debug message is generated.
*/
void _resize( int size ) const
{ assert( size == this->size() ); }
public:
/**
* Default constructor. Constructs a vector with uninitialized coords.
*/
Vector() {}
/**
* Convenience constructor provided for API homogeneity with VectorX.
* The unused_size argument is not used.
*/
explicit Vector( int unused_size )
{ assert( unused_size == this->size() ); }
/**
* Copy constructor.
*/
Vector( const Vector &v )
{
this->readArray( v.array() );
}
/**
* Constructor reading the coords from an array.
*/
Vector( const T *array )
{
readArray( array );
}
/**
* Convenience constructor provided for API homogeneity with VectorX.
* Constructor reading the coords from an array.
* The unused_size argument is not used.
*/
Vector( int unused_size, const T *array )
{
assert( unused_size == this->size() );
readArray( array );
}
/**
* Convenience constructor for vectors of size 2.
*/
Vector( T x, T y )
{
assert( this->size() == 2 );
this->x() = x;
this->y() = y;
}
/**
* Convenience constructor for vectors of size 3.
*/
Vector( T x, T y, T z )
{
assert( this->size() == 3 );
this->x() = x;
this->y() = y;
this->z() = z;
}
/**
* Convenience constructor for vectors of size 4.
*/
Vector( T x, T y, T z, T w )
{
assert( this->size() == 4 );
this->x() = x;
this->y() = y;
this->z() = z;
this->w() = w;
}
Vector & operator = ( const Vector & other )
{ return Base::operator = ( other ); }
Vector & operator += ( const Vector & other )
{ return Base::operator += ( other ); }
Vector & operator -= ( const Vector & other )
{ return Base::operator -= ( other ); }
Vector & operator *=( const T & factor )
{ return Base::operator *= ( factor ); }
Vector & operator /=( const T & factor )
{ return Base::operator /= ( factor ); }
protected:
/**
* The vector's array of coordinates.
*/
T m_array[Size];
};
/** \ingroup dynamicsize
*
* \ingroup vectors
*
* \brief Dynamic-size vector
*
* A class for dynamic-size vectors (for linear algebra).
*
* The template parameter T is the type of the coords of the vector.
* It can be any type representing either real or complex numbers.
* The following typedefs are provided to cover the usual cases:
* @code
typedef VectorX<double> VectorXd;
typedef VectorX<float> VectorXf;
typedef VectorX< std::complex<double> > VectorXcd;
typedef VectorX< std::complex<float> > VectorXcf;
* @endcode
*
* If you prefer fixed-size vectors (they are faster), see the Vector
* class template, which provides exactly the same functionality and API
* in fixed-size version.
*
* The VectorX class template provides all the usual operators and methods
* to manipulate vectors.
*
* Here are some examples of usage of VectorX:
* @code
using namespace Eigen;
using namespace std; // we'll use cout for outputting vectors
double array1[3] = { -1.1, 2.9, 4.3 };
VectorXd vec1( 3, array1 ); // construct vector vec1 from array array1
VectorXd vec2( 3 ); // construct a new uninitialized vector of size 3
double array2[3] = { 2.4, 3.1, -0.7 };
vec2.readArray( array2); // reads the coords of vec2 from array2
vec1 += vec2; // computes the coord-wise sum vec1 + vec2, stores it in vec1
vec1 = vec1 - vec2; // there are also non-assignment operators
vec1 = 0.9 * vec1 + vec2 / 2.6; // you can also multiply/divide by numbers
VectorXd vec3(5); // construct a new uninitialized vector of size 5
vec3 = vec1; // Resizes vec3 to size 3, copies vec1 into vec3
vec1(2) = -1.4; // Stores the value -1.4 in coord 2 of vec1.
cout << vec1 << endl;
cout << "norm of vec1: " << vec1.norm() << endl;
* @endcode
*/
template <typename T>
class VectorX : public VectorBase< T, VectorX<T> >
{
friend class VectorBase< T, VectorX<T> >;
typedef class VectorBase< T, VectorX<T> > Base;
private:
/** \internal
* Small helper function for the constructors and the _resize method
*/
void init( int size )
{
assert( size >= 1 );
m_size = size;
m_array = new T[_size()];
}
/** \internal
* Returns true. A VectorX has dynamic size.
*/
bool _hasDynamicSize() const
{ return true; }
/** \internal
* Returns the size of the vector.
*/
int _size() const
{ return m_size; }
/** \internal
* Resizes the vector.
*/
void _resize( int size );
public:
/**
* Copy constructor
*/
VectorX( const VectorX & other )
{
init( other._size() );
readArray( other.array() );
}
/**
* Constructs a vector with given size and uninitialized coords.
* The default value sor size is 1.
*/
explicit VectorX( int size = 1 )
{ init( size ); }
/**
* Constructs a vector with given size and reads its coord from the array.
*/
VectorX( int size, const T * array )
{
init( size );
readArray( array );
}
~VectorX()
{ delete[] m_array; }
VectorX & operator = ( const VectorX & other )
{ return Base::operator = ( other ); }
VectorX & operator += ( const VectorX & other )
{ return Base::operator += ( other ); }
VectorX & operator -= ( const VectorX & other )
{ return Base::operator -= ( other ); }
VectorX & operator *=( const T & factor )
{ return Base::operator *= ( factor ); }
VectorX & operator /=( const T & factor )
{ return Base::operator /= ( factor ); }
protected:
/**
* The size (dimension) of the vector
*/
int m_size;
/**
* The vector's array of coordinates.
*/
T *m_array;
};
template<typename T>
void VectorX<T>::_resize( int size )
{
assert( size >= 1 );
if( size == _size() ) return;
if( size > _size() )
{
delete[] m_array;
m_array = new T[size];
}
m_size = size;
}
EIGEN_MAKE_FIXEDSIZE_TYPEDEFS(Vector)
EIGEN_MAKE_DYNAMICSIZE_TYPEDEFS(VectorX)
}
#endif // EIGEN_VECTOR_H
|