File: power_analysis.rkout

package info (click to toggle)
rkward 0.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 45,628 kB
  • sloc: cpp: 50,489; xml: 9,596; javascript: 6,401; python: 21; makefile: 13
file content (140 lines) | stat: -rw-r--r-- 4,862 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
<h1>Two-sample t test power calculation</h1>
<h2>Parameters</h2>
<ul><li>Parameter to determine: Power of test</li>
<li>alternative: two.sided</li>
</ul>
DATE<br />
<table border="1">
<tr><td></td><td>Parameters</td></tr>
<tr><td>n        </td><td>30.00000</td></tr>
<tr><td>d        </td><td> 0.30000</td></tr>
<tr><td>sig.level</td><td> 0.05000</td></tr>
<tr><td>power    </td><td> 0.20785</td></tr>
</table>

<p class='character'><strong>Note:</strong> n is number in *each* group</p>

<p class='character'>Interpretation of effect size <strong>d</strong> (according to Cohen):</p>
<table border="1">
<tr><td>small</td><td>medium</td><td>large</td></tr>
<tr><td>0.2</td><td>0.5</td><td>0.8</td></tr>
</table>
<h1>t test power calculation</h1>
<h2>Parameters</h2>
<ul><li>Parameter to determine: Power of test</li>
<li>alternative: two.sided</li>
</ul>
DATE<br />
<table border="1">
<tr><td></td><td>Parameters</td></tr>
<tr><td>n1       </td><td>27.00000</td></tr>
<tr><td>n2       </td><td>33.00000</td></tr>
<tr><td>d        </td><td> 0.30000</td></tr>
<tr><td>sig.level</td><td> 0.05000</td></tr>
<tr><td>power    </td><td> 0.20624</td></tr>
</table>

<p class='character'>Interpretation of effect size <strong>d</strong> (according to Cohen):</p>
<table border="1">
<tr><td>small</td><td>medium</td><td>large</td></tr>
<tr><td>0.2</td><td>0.5</td><td>0.8</td></tr>
</table>
<h1>approximate correlation power calculation (arctangh transformation)</h1>
<h2>Parameters</h2>
<ul><li>Parameter to determine: Sample size</li>
<li>alternative: two.sided</li>
</ul>
DATE<br />
<table border="1">
<tr><td></td><td>Parameters</td></tr>
<tr><td>n        </td><td>86.207</td></tr>
<tr><td>r        </td><td> 0.300</td></tr>
<tr><td>sig.level</td><td> 0.050</td></tr>
<tr><td>power    </td><td> 0.810</td></tr>
</table>

<p class='character'>Interpretation of effect size <strong>r</strong> (according to Cohen):</p>
<table border="1">
<tr><td>small</td><td>medium</td><td>large</td></tr>
<tr><td>0.1</td><td>0.3</td><td>0.5</td></tr>
</table>
<h1>Chi squared power calculation</h1>
<h2>Parameters</h2>
<ul><li>Parameter to determine: Significance level</li>
</ul>
DATE<br />
<table border="1">
<tr><td></td><td>Parameters</td></tr>
<tr><td>w        </td><td> 0.30000</td></tr>
<tr><td>N        </td><td>30.00000</td></tr>
<tr><td>df       </td><td>32.00000</td></tr>
<tr><td>sig.level</td><td> 0.71662</td></tr>
<tr><td>power    </td><td> 0.81000</td></tr>
</table>

<p class='character'><strong>Note:</strong> N is the number of observations</p>

<p class='character'>Interpretation of effect size <strong>w</strong> (according to Cohen):</p>
<table border="1">
<tr><td>small</td><td>medium</td><td>large</td></tr>
<tr><td>0.1</td><td>0.3</td><td>0.5</td></tr>
</table>
<h1>Difference of proportion power calculation for binomial distribution (arcsine transformation)</h1>
<h2>Parameters</h2>
<ul><li>Parameter to determine: Significance level</li>
<li>alternative: greater</li>
</ul>
DATE<br />
<table border="1">
<tr><td></td><td>Parameters</td></tr>
<tr><td>h        </td><td> 0.30000</td></tr>
<tr><td>n        </td><td>30.00000</td></tr>
<tr><td>sig.level</td><td> 0.38821</td></tr>
<tr><td>power    </td><td> 0.81000</td></tr>
</table>

<p class='character'><strong>Note:</strong> same sample sizes</p>

<p class='character'>Interpretation of effect size <strong>h</strong> (according to Cohen):</p>
<table border="1">
<tr><td>small</td><td>medium</td><td>large</td></tr>
<tr><td>0.2</td><td>0.5</td><td>0.8</td></tr>
</table>
<h1>Mean power calculation for normal distribution with known variance</h1>
<h2>Parameters</h2>
<ul><li>Parameter to determine: Significance level</li>
<li>alternative: two.sided</li>
</ul>
DATE<br />
<table border="1">
<tr><td></td><td>Parameters</td></tr>
<tr><td>d        </td><td> 0.30000</td></tr>
<tr><td>n        </td><td>30.00000</td></tr>
<tr><td>sig.level</td><td> 0.40906</td></tr>
<tr><td>power    </td><td> 0.80000</td></tr>
</table>

<p class='character'>Interpretation of effect size <strong>d</strong> (according to Cohen):</p>
<table border="1">
<tr><td>small</td><td>medium</td><td>large</td></tr>
<tr><td>0.2</td><td>0.5</td><td>0.8</td></tr>
</table>
<h1>Multiple regression power calculation</h1>
<h2>Parameters</h2>
<ul><li>Parameter to determine: Parameter count</li>
</ul>
DATE<br />
<table border="1">
<tr><td></td><td>Parameters</td></tr>
<tr><td>u        </td><td> 3.4454</td></tr>
<tr><td>v        </td><td>30.0000</td></tr>
<tr><td>f2       </td><td> 0.3000</td></tr>
<tr><td>sig.level</td><td> 0.1000</td></tr>
<tr><td>power    </td><td> 0.8000</td></tr>
</table>

<p class='character'>Interpretation of effect size <strong>f<sup>2</sup></strong> (according to Cohen):</p>
<table border="1">
<tr><td>small</td><td>medium</td><td>large</td></tr>
<tr><td>0.02</td><td>0.15</td><td>0.35</td></tr>
</table>