1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
|
<h1>Two-sample t test power calculation</h1>
<h2>Parameters</h2>
<ul><li>Parameter to determine: Power of test</li>
<li>alternative: two.sided</li>
</ul>
DATE<br />
<table border="1">
<tr><td></td><td>Parameters</td></tr>
<tr><td>n </td><td>30.00000</td></tr>
<tr><td>d </td><td> 0.30000</td></tr>
<tr><td>sig.level</td><td> 0.05000</td></tr>
<tr><td>power </td><td> 0.20785</td></tr>
</table>
<p class='character'><strong>Note:</strong> n is number in *each* group</p>
<p class='character'>Interpretation of effect size <strong>d</strong> (according to Cohen):</p>
<table border="1">
<tr><td>small</td><td>medium</td><td>large</td></tr>
<tr><td>0.2</td><td>0.5</td><td>0.8</td></tr>
</table>
<h1>t test power calculation</h1>
<h2>Parameters</h2>
<ul><li>Parameter to determine: Power of test</li>
<li>alternative: two.sided</li>
</ul>
DATE<br />
<table border="1">
<tr><td></td><td>Parameters</td></tr>
<tr><td>n1 </td><td>27.00000</td></tr>
<tr><td>n2 </td><td>33.00000</td></tr>
<tr><td>d </td><td> 0.30000</td></tr>
<tr><td>sig.level</td><td> 0.05000</td></tr>
<tr><td>power </td><td> 0.20624</td></tr>
</table>
<p class='character'>Interpretation of effect size <strong>d</strong> (according to Cohen):</p>
<table border="1">
<tr><td>small</td><td>medium</td><td>large</td></tr>
<tr><td>0.2</td><td>0.5</td><td>0.8</td></tr>
</table>
<h1>approximate correlation power calculation (arctangh transformation)</h1>
<h2>Parameters</h2>
<ul><li>Parameter to determine: Sample size</li>
<li>alternative: two.sided</li>
</ul>
DATE<br />
<table border="1">
<tr><td></td><td>Parameters</td></tr>
<tr><td>n </td><td>86.207</td></tr>
<tr><td>r </td><td> 0.300</td></tr>
<tr><td>sig.level</td><td> 0.050</td></tr>
<tr><td>power </td><td> 0.810</td></tr>
</table>
<p class='character'>Interpretation of effect size <strong>r</strong> (according to Cohen):</p>
<table border="1">
<tr><td>small</td><td>medium</td><td>large</td></tr>
<tr><td>0.1</td><td>0.3</td><td>0.5</td></tr>
</table>
<h1>Chi squared power calculation</h1>
<h2>Parameters</h2>
<ul><li>Parameter to determine: Significance level</li>
</ul>
DATE<br />
<table border="1">
<tr><td></td><td>Parameters</td></tr>
<tr><td>w </td><td> 0.30000</td></tr>
<tr><td>N </td><td>30.00000</td></tr>
<tr><td>df </td><td>32.00000</td></tr>
<tr><td>sig.level</td><td> 0.71662</td></tr>
<tr><td>power </td><td> 0.81000</td></tr>
</table>
<p class='character'><strong>Note:</strong> N is the number of observations</p>
<p class='character'>Interpretation of effect size <strong>w</strong> (according to Cohen):</p>
<table border="1">
<tr><td>small</td><td>medium</td><td>large</td></tr>
<tr><td>0.1</td><td>0.3</td><td>0.5</td></tr>
</table>
<h1>Difference of proportion power calculation for binomial distribution (arcsine transformation)</h1>
<h2>Parameters</h2>
<ul><li>Parameter to determine: Significance level</li>
<li>alternative: greater</li>
</ul>
DATE<br />
<table border="1">
<tr><td></td><td>Parameters</td></tr>
<tr><td>h </td><td> 0.30000</td></tr>
<tr><td>n </td><td>30.00000</td></tr>
<tr><td>sig.level</td><td> 0.38821</td></tr>
<tr><td>power </td><td> 0.81000</td></tr>
</table>
<p class='character'><strong>Note:</strong> same sample sizes</p>
<p class='character'>Interpretation of effect size <strong>h</strong> (according to Cohen):</p>
<table border="1">
<tr><td>small</td><td>medium</td><td>large</td></tr>
<tr><td>0.2</td><td>0.5</td><td>0.8</td></tr>
</table>
<h1>Mean power calculation for normal distribution with known variance</h1>
<h2>Parameters</h2>
<ul><li>Parameter to determine: Significance level</li>
<li>alternative: two.sided</li>
</ul>
DATE<br />
<table border="1">
<tr><td></td><td>Parameters</td></tr>
<tr><td>d </td><td> 0.30000</td></tr>
<tr><td>n </td><td>30.00000</td></tr>
<tr><td>sig.level</td><td> 0.40906</td></tr>
<tr><td>power </td><td> 0.80000</td></tr>
</table>
<p class='character'>Interpretation of effect size <strong>d</strong> (according to Cohen):</p>
<table border="1">
<tr><td>small</td><td>medium</td><td>large</td></tr>
<tr><td>0.2</td><td>0.5</td><td>0.8</td></tr>
</table>
<h1>Multiple regression power calculation</h1>
<h2>Parameters</h2>
<ul><li>Parameter to determine: Parameter count</li>
</ul>
DATE<br />
<table border="1">
<tr><td></td><td>Parameters</td></tr>
<tr><td>u </td><td> 3.4454</td></tr>
<tr><td>v </td><td>30.0000</td></tr>
<tr><td>f2 </td><td> 0.3000</td></tr>
<tr><td>sig.level</td><td> 0.1000</td></tr>
<tr><td>power </td><td> 0.8000</td></tr>
</table>
<p class='character'>Interpretation of effect size <strong>f<sup>2</sup></strong> (according to Cohen):</p>
<table border="1">
<tr><td>small</td><td>medium</td><td>large</td></tr>
<tr><td>0.02</td><td>0.15</td><td>0.35</td></tr>
</table>
|