1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
|
#### Methods for the virtual class 'CsparseMatrix' of sparse matrices stored in
#### "column compressed" format.
#### -- many more specific things are e.g. in ./dgCMatrix.R
setAs("CsparseMatrix", "TsparseMatrix",
function(from)
## |-> cholmod_C -> cholmod_T -> chm_triplet_to_SEXP
## modified to support triangular (../src/Csparse.c)
.Call(Csparse_to_Tsparse, from, is(from, "triangularMatrix")))
## special cases (when a specific "to" class is specified)
setAs("dgCMatrix", "dgTMatrix",
function(from) .Call(Csparse_to_Tsparse, from, FALSE))
setAs("dsCMatrix", "dsTMatrix",
function(from) .Call(Csparse_to_Tsparse, from, FALSE))
setAs("dsCMatrix", "dgCMatrix",
function(from) .Call(Csparse_symmetric_to_general, from))
setAs("dtCMatrix", "dtTMatrix",
function(from) .Call(Csparse_to_Tsparse, from, TRUE))
## Current code loses symmetry and triangularity properties. With suitable
## changes to chm_dense_to_SEXP (../src/chm_common.c) we can avoid this.
setAs("CsparseMatrix", "denseMatrix",
function(from) {
## |-> cholmod_C -> cholmod_dense -> chm_dense_to_dense
if (is(from, "triangularMatrix") && from@diag == "U")
from <- .Call(Csparse_diagU2N, from)
.Call(Csparse_to_dense, from)
})
## special cases (when a specific "to" class is specified)
setAs("dgCMatrix", "dgeMatrix",
function(from) .Call(Csparse_to_dense, from))
## cholmod_sparse_to_dense converts symmetric storage to general
## storage so symmetric classes are ok for conversion to matrix.
## unit triangular needs special handling
setAs("CsparseMatrix", "matrix",
function(from) {
## |-> cholmod_C -> cholmod_dense -> chm_dense_to_matrix
if (is(from, "triangularMatrix") && from@diag == "U")
from <- .Call(Csparse_diagU2N, from)
.Call(Csparse_to_matrix, from)
})
### Some group methods:
## TODO : Consider going a level up, and do this for all "Ops"
setMethod("Arith",
signature(e1 = "CsparseMatrix", e2 = "CsparseMatrix"),
function(e1, e2) callGeneric(as(e1, "dgCMatrix"),
as(e2, "dgCMatrix")))
setMethod("Arith",
signature(e1 = "CsparseMatrix", e2 = "numeric"),
function(e1, e2) {
if(length(e2) == 1) { ## e.g., Mat ^ a
f0 <- callGeneric(0, e2)
if(is0(f0)) { # remain sparse, symm., tri.,...
e1@x <- callGeneric(e1@x, e2)
return(e1)
}
}
## all other (potentially non-sparse) cases: give up symm, tri,..
callGeneric(as(e1, paste(.M.kind(e1), "gCMatrix", sep='')), e2)
})
## The same, e1 <-> e2 :
setMethod("Arith",
signature(e1 = "numeric", e2 = "CsparseMatrix"),
function(e1, e2) {
if(length(e1) == 1) {
f0 <- callGeneric(e1, 0)
if(is0(f0)) {
e2@x <- callGeneric(e1, e2@x)
return(e2)
}
}
callGeneric(e1, as(e2, paste(.M.kind(e2), "gCMatrix", sep='')))
})
setMethod("Math",
signature(x = "CsparseMatrix"),
function(x) {
f0 <- callGeneric(0.)
if(is0(f0)) {
## sparseness, symm., triang.,... preserved
x@x <- callGeneric(x@x)
x
} else { ## no sparseness
callGeneric(as_dense(x))
}
})
### workhorse for "[<-" -- both for d* and l* C-sparse matrices :
replCmat <- function (x, i, j, value)
{
di <- dim(x)
dn <- dimnames(x)
i1 <- if(missing(i)) 0:(di[1] - 1:1) else .ind.prep2(i, 1, di, dn)
i2 <- if(missing(j)) 0:(di[2] - 1:1) else .ind.prep2(j, 2, di, dn)
dind <- c(length(i1), length(i2)) # dimension of replacement region
lenRepl <- prod(dind)
lenV <- length(value)
if(lenV == 0) {
if(lenRepl != 0)
stop("nothing to replace with")
else return(x)
}
## else: lenV := length(value) is > 0
if(lenRepl %% lenV != 0)
stop("number of items to replace is not a multiple of replacement length")
if(lenV > lenRepl)
stop("too many replacement values")
clx <- c(class(x)) # keep "symmetry" if changed here:
x.sym <- is(x, "symmetricMatrix")
if(x.sym) { ## only half the indices are there..
x.sym <-
(dind[1] == dind[2] && i1 == i2 &&
(lenRepl == 1 || isSymmetric(array(value, dim=dind))))
## x.sym : result is *still* symmetric
x <- .Call(Csparse_symmetric_to_general, x)
}
xj <- .Call(Matrix_expand_pointers, x@p)
sel <- (!is.na(match(x@i, i1)) &
!is.na(match( xj, i2)))
has.x <- any("x" == slotNames(x)) # i.e. *not* nonzero-pattern
if(has.x && sum(sel) == lenRepl) { ## all entries to be replaced are non-zero:
value <- rep(value, length = lenRepl)
## Ideally we only replace them where value != 0 and drop the value==0
## ones; but that would have to (?) go through dgT*
## v0 <- 0 == value
## if (lenRepl == 1) and v0 is TRUE, the following is not doing anything
##- --> ./dgTMatrix.R and its replTmat()
## x@x[sel[!v0]] <- value[!v0]
x@x[sel] <- value
return(if(x.sym) as_CspClass(x, clx) else x)
}
## else go via Tsparse.. {FIXME: a waste! - we already have 'xj' ..}
x <- as(x, "TsparseMatrix")
if(missing(i))
x[ ,j] <- value
else if(missing(j))
x[i, ] <- value
else
x[i,j] <- value
if(any(is0(x@x))) ## drop all values that "happen to be 0"
drop0(x, clx)
else as_CspClass(x, clx)
}
setReplaceMethod("[", signature(x = "CsparseMatrix", i = "index", j = "missing",
value = "replValue"),
function (x, i, value) replCmat(x, i=i, value=value))
setReplaceMethod("[", signature(x = "CsparseMatrix", i = "missing", j = "index",
value = "replValue"),
function (x, j, value) replCmat(x, j=j, value=value))
setReplaceMethod("[", signature(x = "CsparseMatrix", i = "index", j = "index",
value = "replValue"),
replCmat)
setMethod("crossprod", signature(x = "CsparseMatrix", y = "missing"),
function(x, y = NULL) {
if (is(x, "symmetricMatrix")) {
warning("crossprod(x) calculated as x %*% x for sparse, symmetric x")
return(x %*% x)
}
.Call(Csparse_crossprod, x, trans = FALSE, triplet = FALSE)
})
setMethod("crossprod", signature(x = "CsparseMatrix", y = "CsparseMatrix"),
function(x, y = NULL)
.Call(Csparse_Csparse_crossprod, x, y, trans = FALSE))
setMethod("tcrossprod", signature(x = "CsparseMatrix", y = "CsparseMatrix"),
function(x, y = NULL)
.Call(Csparse_Csparse_crossprod, x, y, trans = TRUE))
## FIXME: Generalize the class of y. This specific method is to replace one
## in dgCMatrix.R
setMethod("crossprod", signature(x = "CsparseMatrix", y = "ddenseMatrix"),
function(x, y = NULL) .Call(Csparse_dense_crossprod, x, y))
setMethod("crossprod", signature(x = "CsparseMatrix", y = "matrix"),
function(x, y = NULL) .Call(Csparse_dense_crossprod, x, y))
setMethod("crossprod", signature(x = "CsparseMatrix", y = "numeric"),
function(x, y = NULL) .Call(Csparse_dense_crossprod, x, y))
setMethod("tcrossprod", signature(x = "CsparseMatrix", y = "missing"),
function(x, y = NULL) {
if (is(x, "symmetricMatrix")) {
warning("tcrossprod(x) calculated as x %*% x for sparse, symmetric x")
return(x %*% x)
}
.Call(Csparse_crossprod, x, trans = TRUE, triplet = FALSE)
})
setMethod("t", signature(x = "CsparseMatrix"),
function(x) .Call(Csparse_transpose, x, is(x, "triangularMatrix")))
setMethod("%*%", signature(x = "CsparseMatrix", y = "CsparseMatrix"),
function(x, y) .Call(Csparse_Csparse_prod, x, y))
setMethod("%*%", signature(x = "CsparseMatrix", y = "ddenseMatrix"),
function(x, y) .Call(Csparse_dense_prod, x, y))
setMethod("%*%", signature(x = "CsparseMatrix", y = "matrix"),
function(x, y) .Call(Csparse_dense_prod, x, y))
## Not needed because of c("Matrix", "numeric") method
##setMethod("%*%", signature(x = "CsparseMatrix", y = "numeric"),
## function(x, y) .Call(Csparse_dense_prod, x, y))
## FIXME(2): These two are sub-optimal : has 2 x t(<dense>) :
setMethod("%*%", signature(x = "ddenseMatrix", y = "CsparseMatrix"),
function(x, y) t(.Call(Csparse_dense_crossprod, y, t(x))),
valueClass = "dgeMatrix")
setMethod("%*%", signature(x = "matrix", y = "CsparseMatrix"),
function(x, y) t(.Call(Csparse_dense_crossprod, y, t(x))),
valueClass = "dgeMatrix")
## Not needed because of c("numeric", "Matrix") method
##setMethod("%*%", signature(x = "numeric", y = "CsparseMatrix"),
## function(x, y) t(.Call(Csparse_dense_crossprod, y, x)),
## valueClass = "dgeMatrix")
## NB: have extra tril(), triu() methods for symmetric ["dsC" and "lsC"]
setMethod("tril", "CsparseMatrix",
function(x, k = 0, ...) {
k <- as.integer(k[1])
dd <- dim(x); sqr <- dd[1] == dd[2]
stopifnot(-dd[1] <= k, k <= dd[1]) # had k <= 0
r <- .Call(Csparse_band, x, -dd[1], k)
## return "lower triangular" if k <= 0
if(sqr && k <= 0)
as(r, paste(.M.kind(x), "tCMatrix", sep='')) else r
})
setMethod("triu", "CsparseMatrix",
function(x, k = 0, ...) {
k <- as.integer(k[1])
dd <- dim(x); sqr <- dd[1] == dd[2]
stopifnot(-dd[1] <= k, k <= dd[1]) # had k >= 0
r <- .Call(Csparse_band, x, k, dd[2])
## return "upper triangular" if k >= 0
if(sqr && k >= 0)
as(r, paste(.M.kind(x), "tCMatrix", sep='')) else r
})
setMethod("band", "CsparseMatrix",
function(x, k1, k2, ...) {
k1 <- as.integer(k1[1])
k2 <- as.integer(k2[1])
dd <- dim(x); sqr <- dd[1] == dd[2]
stopifnot(-dd[1] <= k1, k1 <= k2, k2 <= dd[1])
r <- .Call(Csparse_band, x, k1, k2)
if(sqr && k1 * k2 >= 0) ## triangular
as(r, paste(.M.kind(x), "tCMatrix", sep=''))
else if (k1 < 0 && k1 == -k2 && isSymmetric(x)) ## symmetric
as(r, paste(.M.kind(x), "sCMatrix", sep=''))
else
r
})
setMethod("diag", "CsparseMatrix",
function(x, nrow, ncol = n) {
dm <- .Call(Csparse_band, x, 0, 0)
dlen <- min(dm@Dim)
ind1 <- dm@i + 1:1 # 1-based index vector
if (is(dm, "nMatrix")) {
val <- rep.int(FALSE, dlen)
val[ind1] <- TRUE
}
else if (is(dm, "lMatrix")) {
val <- rep.int(FALSE, dlen)
val[ind1] <- as.logical(dm@x)
}
else {
val <- rep.int(0, dlen)
## cMatrix not yet active but for future expansion
if (is(dm, "cMatrix")) val <- as.complex(val)
val[ind1] <- dm@x
}
val
})
setMethod("colSums", signature(x = "CsparseMatrix"), .as.dgC.Fun,
valueClass = "numeric")
setMethod("colMeans", signature(x = "CsparseMatrix"), .as.dgC.Fun,
valueClass = "numeric")
setMethod("rowSums", signature(x = "CsparseMatrix"), .as.dgC.Fun,
valueClass = "numeric")
setMethod("rowMeans", signature(x = "CsparseMatrix"), .as.dgC.Fun,
valueClass = "numeric")
|