1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
|
\name{sparseLU-class}
\docType{class}
\alias{sparseLU-class}
\title{Sparse LU decomposition of a square sparse matrix}
\description{Objects of this class contain the components of the LU
decomposition of a sparse square matrix.}
\section{Objects from the Class}{
Objects can be created by calls of the form \code{new("sparseLU",
...)} but are more commonly created by function \code{\link{lu}}
applied to a sparse matrix, such as a matrix of class
\code{\linkS4class{dgCMatrix}}.}
}
\section{Slots}{
\describe{
\item{\code{L}:}{Object of class \code{"\linkS4class{dgCMatrix}"} The lower
triangular factor from the left.}
\item{\code{U}:}{Object of class \code{"\linkS4class{dgCMatrix}"} The upper
triangular factor from the right.}
\item{\code{p}:}{Object of class \code{"integer"} Permutation
applied from the left. }
\item{\code{q}:}{Object of class \code{"integer"} Permutation
applied from the right.}
\item{\code{Dim}:}{the dimension of the original matrix; inherited
from class \code{\linkS4class{MatrixFactorization}}.}
}
}
\section{Extends}{
Class \code{"\linkS4class{LU}"}, directly.
Class \code{"\linkS4class{MatrixFactorization}"}, by class \code{"LU"}.
}
\section{Methods}{
No methods defined with class "sparseLU" in the signature.
}
%\references{}
%\author{}
\note{
The decomposition is of the form
\deqn{A = PLUQ}{A = PLUQ}
where all matrices are sparse and of size \eqn{n\times n}{n by n}.
The matrices \eqn{P} and \eqn{Q} are permutation matrices, \eqn{L} is
lower triangular and \eqn{U} is upper triangular.
}
\seealso{
\code{\link{lu}}, \code{\link[base]{solve}}, \code{\linkS4class{dgCMatrix}}
}
\examples{
}
\keyword{classes}
|