1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
|
library(Matrix)
### Matrix Products including cross products
source(system.file("test-tools.R", package = "Matrix"))
m5 <- 1 + as(diag(-1:4)[-5,], "dgeMatrix")
## named dimnames:
dimnames(m5) <- list(Rows= LETTERS[1:5], paste("C", 1:6, sep=""))
m. <- as(m5, "matrix")
stopifnot(dim(m5) == 5:6,
class(cm5 <- crossprod(m5)) == "dpoMatrix")
assert.EQ.mat((c.m5 <- t(m5) %*% m5), as(cm5, "matrix"))
## crossprod() with numeric vector RHS and LHS
## not sensical for tcrossprod() because of 'vec' --> cbind(vec) promotion:
assert.EQ.mat( crossprod(rep(1,5), m5), rbind( colSums(m5)))
assert.EQ.mat( crossprod(rep(1,5), m.), rbind( colSums(m5)))
assert.EQ.mat( crossprod(m5, rep(1,5)), cbind( colSums(m5)))
assert.EQ.mat( crossprod(m., rep(1,5)), cbind( colSums(m5)))
## classes differ
tc.m5 <- m5 %*% t(m5) # "dge*", no dimnames (FIXME)
(tcm5 <- tcrossprod(m5)) # "dpo*" w/ dimnames
assert.EQ.mat(tc.m5, mm5 <- as(tcm5, "matrix"))
## tcrossprod(x,y) :
assert.EQ.mat(tcrossprod(m5, m5), mm5)
assert.EQ.mat(tcrossprod(m5, m.), mm5)
assert.EQ.mat(tcrossprod(m., m5), mm5)
## simple cases with 'scalars' treated as 1x1 matrices:
d <- Matrix(1:5)
d %*% 2
10 %*% t(d)
assertError(3 %*% d) # must give an error , similar to
assertError(5 %*% as.matrix(d)) # -> error
## right and left "numeric" and "matrix" multiplication:
(p1 <- m5 %*% c(10, 2:6))
(p2 <- c(10, 2:5) %*% m5)
(pd1 <- m5 %*% diag(1:6))
(pd. <- m5 %*% Diagonal(x = 1:6))
(pd2 <- diag (10:6) %*% m5)
(pd..<- Diagonal(x = 10:6) %*% m5)
stopifnot(dim(crossprod(t(m5))) == c(5,5),
c(class(p1),class(p2),class(pd1),class(pd2),
class(pd.),class(pd..)) == "dgeMatrix")
assert.EQ.mat(p1, cbind(c(20,30,33,38,54)))
assert.EQ.mat(pd1, m. %*% diag(1:6))
assert.EQ.mat(pd2, diag(10:6) %*% m.)
assert.EQ.mat(pd., as(pd1,"matrix"))
assert.EQ.mat(pd..,as(pd2,"matrix"))
## check that 'solve' and '%*%' are inverses
set.seed(1)
A <- Matrix(rnorm(25), nc = 5)
y <- rnorm(5)
all.equal((A %*% solve(A, y))@x, y)
Atr <- new("dtrMatrix", Dim = A@Dim, x = A@x, uplo = "U")
all.equal((Atr %*% solve(Atr, y))@x, y)
## sparse matrix products
data(KNex); mm <- KNex$mm
M <- mm[1:500, 1:200]
MT <- as(M, "TsparseMatrix")
cpr <- t(mm) %*% mm
cpr. <- crossprod(mm)
cpr.. <- crossprod(mm, mm)
stopifnot(is(cpr., "symmetricMatrix"),
identical3(cpr, as(cpr., class(cpr)), cpr..))
## with dimnames:
m <- Matrix(c(0, 0, 2:0), 3, 5)
dimnames(m) <- list(LETTERS[1:3], letters[1:5])
m
p1 <- t(m) %*% m
(p1. <- crossprod(m)) # FIXME: show() does not even show row names
t1 <- m %*% t(m)
(t1. <- tcrossprod(m))
stopifnot(isSymmetric(p1.),
isSymmetric(t1.),
identical(p1, as(p1., class(p1))),
identical(t1, as(t1., class(t1))),
identical(dimnames(p1), dimnames(p1.)),
identical(dimnames(t1), dimnames(t1.))
)
showMethods("%*%", class=class(M))
v1 <- rep(1, ncol(M))
str(r <- M %*% Matrix(v1))
str(rT <- MT %*% Matrix(v1))
stopifnot(identical(r, rT))
str(r. <- M %*% as.matrix(v1))
stopifnot(identical4(r, r., rT, M %*% as(v1, "matrix")))
v2 <- rep(1,nrow(M))
r2 <- t(Matrix(v2)) %*% M
r2T <- v2 %*% MT
str(r2. <- v2 %*% M)
stopifnot(identical3(r2, r2., t(as(v2, "matrix")) %*% M))
## Sparse Cov.matrices from Harri Kiiveri @ CSIRO
a <- matrix(0,5,5)
a[1,2] <- a[2,3] <- a[3,4] <- a[4,5] <- 1
a <- a + t(a) + 2*diag(5)
b <- as(a, "dsCMatrix") ## ok, but we recommend to use Matrix() ``almost always'' :
(b. <- Matrix(a, sparse = TRUE))
stopifnot(identical(b, b.))
## calculate conditional variance matrix ( vars 3 4 5 given 1 2 )
(B2 <- b[1:2, 1:2])
stopifnot(is(B2, "dsCMatrix"))# symmetric indexing keeps symmetry
bb <- b[1:2, 3:5]
stopifnot(identical(as.mat(bb), rbind(0, c(1,0,0))))
if(FALSE)## FIXME: use fully-sparse cholmod_spsolve() based solution !!
z.s <- solve(B2, bb)
## -> dense RHS and dense result
z. <- solve(as(B2, "dgCMatrix"), bb)
z <- solve( B2, as(bb,"dgeMatrix"))
stopifnot(identical(z, z.))
## finish calculating conditional variance matrix
v <- b[3:5,3:5] - crossprod(bb,z)
stopifnot(all.equal(as.mat(v),
matrix(c(4/3, 1:0, 1,2,1, 0:2), 3), tol = 1e-14))
###--- "logical" Matrices : ---------------------
## Robert's Example, a bit more readable
fromTo <- rbind(c(2,10),
c(3, 9))
N <- 10
nrFT <- nrow(fromTo)
rowi <- rep.int(1:nrFT, fromTo[,2]-fromTo[,1] + 1) - 1:1
coli <- unlist(lapply(1:nrFT, function(x) fromTo[x,1]:fromTo[x,2])) - 1:1
## "n" --- nonzero pattern Matrices
sM <- new("ngTMatrix", i = rowi, j=coli, Dim=as.integer(c(N,N)))
sM # nice
sm <- as(sM, "matrix")
sM %*% sM
assert.EQ.mat(sM %*% sM, sm %*% sm)
assert.EQ.mat(t(sM) %*% sM,
(t(sm) %*% sm) > 0, tol=0)
crossprod(sM)
tcrossprod(sM)
stopifnot(identical(as( crossprod(sM), "ngCMatrix"), t(sM) %*% sM),
identical(as(tcrossprod(sM), "ngCMatrix"), sM %*% t(sM)))
assert.EQ.mat( crossprod(sM), crossprod(sm) > 0)
assert.EQ.mat(tcrossprod(sM), as(tcrossprod(sm),"matrix") > 0)
## "l" --- logical Matrices -- use usual 0/1 arithmetic
nsM <- sM
sM <- as(sM, "lMatrix")
sm <- as(sM, "matrix")
stopifnot(identical(sm, as.matrix(nsM)))
sM %*% sM
assert.EQ.mat(sM %*% sM, sm %*% sm)
assert.EQ.mat(t(sM) %*% sM,
t(sm) %*% sm, tol=0)
crossprod(sM)
tcrossprod(sM)
stopifnot(identical( crossprod(sM), as(t(sM) %*% sM, "dsCMatrix")),
identical(tcrossprod(sM), as(sM %*% t(sM), "dsCMatrix")))
assert.EQ.mat( crossprod(sM), crossprod(sm))
assert.EQ.mat(tcrossprod(sM), as(tcrossprod(sm),"matrix"))
## A sparse example - with *integer* matrix:
M <- Matrix(cbind(c(1,0,-2,0,0,0,0,0,2.2,0),
c(2,0,0,1,0), 0, 0, c(0,0,8,0,0),0))
t(M)
(-4:5) %*% M
stopifnot(as.vector(print(t(M %*% 1:6))) ==
c(as(M,"matrix") %*% 1:6))
(M.M <- crossprod(M))
MM. <- tcrossprod(M)
stopifnot(class(MM.) == "dsCMatrix",
class(M.M) == "dsCMatrix")
## even simpler
m <- matrix(0, 4,7); m[c(1, 3, 6, 9, 11, 22, 27)] <- 1
(mm <- Matrix(m))
(cm <- Matrix(crossprod(m)))
stopifnot(identical(crossprod(mm), cm))
(tm1 <- Matrix(tcrossprod(m))) #-> had bug in 'Matrix()' !
(tm2 <- tcrossprod(mm))
Im2 <- solve(tm2[-4,-4])
stopifnot(class(tm1) == class(tm2),
class(tm1) == "dsCMatrix",# but they differ by "uplo"
identical(Im2 %*% tm2[1:3,], Matrix(cbind(diag(3),0),sparse=FALSE))
)
cat('Time elapsed: ', proc.time(),'\n') # for ``statistical reasons''
|