File: simple.R

package info (click to toggle)
rmatrix 0.9975-6-1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 4,136 kB
  • ctags: 2,162
  • sloc: ansic: 35,914; makefile: 225; fortran: 151; sh: 67
file content (228 lines) | stat: -rw-r--r-- 7,640 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
#### Currently a collection of simple tests
##	(since 'Matrix' takes long to load, rather have fewer source files!)

library(Matrix)

source(system.file("test-tools.R", package = "Matrix"))# identical3() etc

### Matrix() ''smartness''
(d4 <- Matrix(diag(4)))
(z4 <- Matrix(0*diag(4)))
(o4 <- Matrix(1+diag(4)))
(m4 <- Matrix(cbind(0,rbind(6*diag(3),0))))
dm4 <- Matrix(m4, sparse = FALSE)
class(mN <-  Matrix(NA, 3,4)) # NA *is* logical
stopifnot(validObject(d4), validObject(z4), validObject(o4),
          validObject(m4), validObject(dm4), validObject(mN))
assert.EQ.mat(dm4, as(m4, "matrix"))
assert.EQ.mat(mN, matrix(NA, 3,4))
sL <- Matrix(, 3,4, sparse=TRUE)# -> "lgC
stopifnot(##length(sN@i) == 0, # all "FALSE"
          validObject(Matrix(c(NA,0), 4, 3, byrow = TRUE)),
          validObject(Matrix(c(NA,0), 4, 4)),
          is(Matrix(c(NA,0,0,0), 4, 4), "sparseMatrix"))

## large sparse ones: these now directly "go sparse":
str(m0 <- Matrix(0,     nrow=100, ncol = 1000))
str(l0 <- Matrix(FALSE, nrow=100, ncol = 200))

## with dimnames:
m. <- matrix(c(0, 0, 2:0), 3, 5)
dimnames(m.) <- list(LETTERS[1:3], letters[1:5])
(m <- Matrix(m.))
m@Dimnames[[2]] <- m@Dimnames[[1]]
## not valid anymore:
(val <- validObject(m, test=TRUE))
stopifnot(is.character(val))

###--  Sparse Triangular :

(t1 <- new("dtTMatrix", x= c(3,7), i= 0:1, j=3:2,
           Dim= as.integer(c(4,4))))
stopifnot(validObject(t1),
          validObject(t1c <- as(t1, "dtCMatrix")))
assert.EQ.mat(t1, as(t1c, "matrix"))

## from  0-diagonal to unit-diagonal {low-level step}:
tu <- t1 ; tu@diag <- "U"
tu
cu <- as(tu, "dtCMatrix")
stopifnot(validObject(cu), validObject(tu. <- as(cu, "dtTMatrix")),
          ## NOT: identical(tu, tu.), # since T* is not unique!
	  identical(cu, as(tu., "dtCMatrix")),
	  validObject(t(cu)),
	  validObject(t(tu)))
assert.EQ.mat(cu, as(tu,"matrix"), tol=0)
cu[1,2] <- tu[1,2] <- NA
mu <- as(tu,"matrix")
assert.EQ.mat(cu, mu, tol=0)
stopifnot(identical3(cu[cu > 1],  tu [tu > 1], mu [mu > 1]),
	  identical3(cu[cu <= 1], tu[tu <= 1], mu[mu <= 1]))

###-- Numeric Dense: Crossprod & Solve

set.seed(123)
mm. <- mm <- Matrix(rnorm(500 * 150), nc = 150)
stopifnot(validObject(mm))
xpx <- crossprod(mm)
stopifnot(identical(mm, mm.),# once upon a time, mm was altered by crossprod()
          validObject(xpx))
str(mm) # 'dge*"
str(xpx)# 'dpo*"
xpy <- crossprod(mm, rnorm(500))
res <- solve(xpx, xpy)
str(xpx)# now with Cholesky factor
stopifnot(validObject(xpx),
          validObject(xpy),
          validObject(res))
stopifnot(all.equal(xpx %*% res, xpy, tol= 1e-12))

###-- more solve() methods  {was ./solve.R }

## first for "dgeMatrix" and all kinds of RHS :
(m6 <- 1 + as(diag(0:5), "dgeMatrix"))
rcond(m6)
I6 <- as(diag(6), "dgeMatrix")
stopifnot(all.equal(I6, m6 %*% solve(m6)),
          all.equal(I6, solve(m6) %*% m6) )

(i6 <- solve(m6, Matrix(1:6)))
stopifnot(identical(i6, as(cbind(c(-4, rep(1,5))), "dgeMatrix")),
          identical(i6, solve(m6, 1:6)),
          identical(i6, solve(m6, matrix(1:6))),
          identical(i6, solve(m6, matrix(c(1,2,3,4,5,6))))
          )

## solve(<sparse>)
(m <- t1+ t(t1) + Diagonal(4))
i.m <- solve(as.mat(m))
I1 <- m %*% i.m
o4 <- diag(I1)
im <- solve(m)
(I2 <- m %*% im)
(ms <- as(m, "dsCMatrix"))
## solve(<sparse>, <sparse>):
s.mm <-  solve(m,m)
s.mms <- solve(m, ms)
## these now work "fully-sparse"
s.ms2 <- solve(ms, ms)
s.msm <- solve(ms, m)
I4c <- as(Matrix(diag(4),sparse=TRUE), "dgCMatrix")
stopifnot(is(im, "Matrix"), is(I2, "Matrix"),
          all.equal(I1, I2, tol = 1e-14),
          all.equal(diag(4), as.mat(I2), tol = 1e-12),
          all.equal(s.mm,  I2, tol = 1e-14),
          all.equal(s.mms, I2, tol = 1e-14),
          all.equal(s.ms2, s.msm, tol = 4e-15),
          all.equal(s.ms2, I4c  , tol = 4e-15),
          abs(o4 - 1) < 1e-14)

###-- row- and column operations  {was ./rowcolOps.R }

set.seed(321)
(m1 <- round(Matrix(rnorm(25), 5), 2))
m1k <- Matrix(round(rnorm(1000), 2), 50, 20)
m.m <- as(m1k, "matrix")
stopifnot(all.equal(colMeans(m1k), colMeans(m.m)),
          all.equal(colSums (m1k), colSums (m.m)),
          all.equal(rowMeans(m1k), rowMeans(m.m)),
          all.equal(rowSums (m1k), rowSums (m.m)))

###-- kronecker for nonsparse uses Matrix(.):
stopifnot(is(kr <- kronecker(m1, m6), "Matrix"))
assert.EQ.mat(kr,
              kronecker(as(m1, "matrix"),
                        as(m6, "matrix")),
              tol = 0)
## sparse:
(kt1 <- kronecker(t1, tu))
kt2 <- kronecker(t1c, cu)
stopifnot(identical(Matrix:::uniq(kt1), Matrix:::uniq(kt2)))
## but kt1 and kt2, both "dgT" are different since entries are not ordered!
ktf <- kronecker(as.matrix(t1), as.matrix(tu))
if(FALSE) # FIXME? our kronecker treats "0 * NA" as "0" for structural-0
assert.EQ.mat(kt2, ktf, tol= 0)

## coercion from "dpo" or "dsy"
xx <- as(xpx, "dsyMatrix")
stopifnot(isSymmetric(xxS  <- as(xx,  "sparseMatrix")),
          isSymmetric(xpxS <- as(xpx, "sparseMatrix")))

tm <- matrix(0, 8,8)
tm[cbind(c(1,1,2,7,8),
         c(3,6,4,8,8))] <- c(2,-30,15,20,80)
(tM <- Matrix(tm))                ## dtC
(mM <- Matrix(m <- (tm + t(tm)))) ## dsC
mT <- as(mM, "dsTMatrix")
gC <- as(as(mT, "dgTMatrix"), "dgCMatrix")
## Check that 'mT' and gC print properly :
pr.mT <- capture.output(mT)
nn <- unlist(strsplit(gsub(" +\\.", "", sub("^....", "", pr.mT[-(1:2)])), " "))
stopifnot(as.numeric(nn[nn != ""]) == m[m != 0],
          capture.output(gC)[-1] == pr.mT[-1])
assert.EQ.mat(tM, tm, tol=0)
assert.EQ.mat(gC, m,  tol=0)
assert.EQ.mat(mT, m,  tol=0)
stopifnot(is(mM, "dsCMatrix"), is(tM, "dtCMatrix"),
          ## coercions  general <-> symmetric
          identical(as(as(mM, "dgCMatrix"), "dsCMatrix"), mM),
          identical(as(as(mM, "dgTMatrix"), "dsTMatrix"), mT),
          identical(as(as(tM, "dgCMatrix"), "dtCMatrix"), tM)
)
eM <- eigen(mM) # works thanks to base::as.matrix hack in ../R/zzz.R
stopifnot(all.equal(eM$values,
                { v <- c(162.462112512353, 30.0665927567458)
                  c(v, 15, 0, 0, 160-v[1], -15, -v[2])}, tol=1e-14))

##--- symmetric -> pos.def. needs valid test:
m5 <- Matrix(diag(5) - 1)
if(FALSE) # FIXME: this happily "works" but MM thinks it shouldn't:
assertError(as(m5, "dpoMatrix"))


###-- sparse nonzero pattern : ----------

(nkt <- as(as(kt1, "dgCMatrix"), "ngCMatrix"))# ok
(clt <- crossprod(nkt))
crossprod(clt) ## a warning: crossprod() of symmetric


### "d" <-> "l"  for (symmetric) sparse :
data(KNex)
mm <- KNex$mm
xpx <- crossprod(mm)
## extract nonzero pattern
nxpx <- as(xpx, "nsCMatrix")
if(FALSE)
    show(nxpx) ## gives error about "nsC" -> "ngT" coercion ..
## The bug is actually from *subsetting* the large matrix:
if(FALSE) ## FIXME
    r <- nxpx[1:2,]

lmm <- as(mm, "lgCMatrix")
nmm <- as(lmm, "nMatrix")
xlx <- crossprod(lmm)
x.x <- crossprod(nmm)

## now A = lxpx and B = xlx should be close, but not quite the same
## since <x,y> = 0 is well possible when x!=0 and y!=0 .
## However,  A[i,j] != 0 ==> B[i,j] != 0:
A <- as(as(nxpx, "lMatrix"), "TsparseMatrix")
B <- as(as(xlx,  "lMatrix"), "TsparseMatrix")
ij <- function(a) a@i + ncol(a) * a@j
stopifnot(all(ij(A) %in% ij(B)))

l3 <- upper.tri(matrix(,3,3))
(c3 <- as(l3, "CsparseMatrix"))
stopifnot(validObject(c3), is(c3, "CsparseMatrix"), is(c3, "triangularMatrix"))

## diagonal, sparse & interactions
stopifnot(is(X <- Diagonal(7) + 1.5 * tM[1:7,1:7], "sparseMatrix"))
X
(XX <- X - chol(crossprod(X)))
## hmm, if we use drop0() here, maybe we should export it ...
XX <- as(Matrix:::drop0(XX), "dsCMatrix")
stopifnot(identical(XX, Matrix(0, nrow(X), ncol(X))))


cat('Time elapsed: ', proc.time(),'\n') # "stats"