1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
|
#### All Methods in relation with the sparseVector (sub)classes
# atomicVector : classUnion (logical,integer,double,....)
setAs("atomicVector", "sparseVector",
function(from) {
n <- length(from)
r <- new(paste(.V.kind(from), "sparseVector", sep=''), length = n)
ii <- from != 0
r@x <- from[ii]
r@i <- seq_len(n)[ii]
r
})
for(T in c("d","i","l","z")) {
setAs("xsparseVector", paste(T, "sparseVector", sep=''),
function(from) {
from@x <- as(from@x, .type.kind[T])
## and now "the hack":
class(from) <- paste(T, "sparseVector", sep='')
from
})
}
setAs("sparseVector", "nsparseVector",
function(from) {
if(any(is.na(from@x)))
stop("cannot coerce 'NA's to \"nsparseVector\"")
new("nsparseVector", i = from@i, length = from@length)
})
sp2vec <- function(x, mode = .type.kind[substr(cl, 1,1)]) {
cl <- class(x)
r <- vector(mode, x@length)
r[x@i] <-
if(cl != "nsparseVector") { # cheap test for 'has x slot'
if(is(x@x, mode)) x@x else as(x@x, mode)
} else TRUE
r
}
setAs("sparseVector", "vector", function(from) sp2vec(from))
setMethod("as.vector", signature(x = "sparseVector", mode = "missing"),
sp2vec)
setMethod("as.vector", signature(x = "sparseVector", mode = "character"),
sp2vec)
setMethod("as.numeric", "sparseVector", function(x) sp2vec(x, mode = "double"))
## the "catch all remaining" method:
setAs("ANY", "sparseVector",
function(from) as(as.vector(from), "sparseVector"))
setAs("diagonalMatrix", "sparseVector",
function(from) {
kind <- .M.kind(from) ## currently only "l" and "d" --> have 'x'
n <- nrow(from)
new(paste(kind, "sparseVector", sep=''),
length = n, # 1-based indexing
i = as.integer(seq(1L, by = n+1, length.out = n)),
x = if(from@diag != "U") from@x else
switch(kind, "d" = 1, "l" = TRUE, "i" = 1L, "z" = 1+0i))
})
setAs("sparseMatrix", "sparseVector",
function(from) as(as(from, "TsparseMatrix"), "sparseVector"))
setAs("TsparseMatrix", "sparseVector",
function(from) {
d <- dim(from)
n <- d[1] * d[2] # length of vector
kind <- .M.kind(from)
if(is_duplicatedT(from, di = d))
from <- uniqTsparse(from)
r <- new(paste(kind, "sparseVector", sep=''), length = n)
r@i <- 1L + from@i + d[1] * from@j
if(kind != "n") ## have 'x' slot
r@x <- from@x
r
})
## TODO -- also want (sparseVector, dim) |---> sparseMatrix
## because of (nrow,ncol) specification can not (?) use as(.).
## Hence use Matrix(.) ? or my spMatrix(.) ?
## For now, define this utility function:
spV2M <- function (x, nrow, ncol, byrow = FALSE)
{
## Purpose: sparseVector --> sparseMatrix constructor
## ----------------------------------------------------------------------
## Arguments: x: "sparseVector" object
## nrow, ncol, byrow: as for matrix() or Matrix()
## ----------------------------------------------------------------------
## Author: Martin Maechler, Date: 11 May 2007
cx <- class(x)
stopifnot(extends(cx, "sparseVector"))
if(!missing(ncol)) { ncol <- as.integer(ncol)
if(ncol <= 0) stop("'ncol' must be >= 1") }
if(!missing(nrow)) { nrow <- as.integer(nrow)
if(nrow <= 0) stop("'nrow' must be >= 1") }
n <- length(x)
if(missing(nrow)) {
if(missing(ncol)) { ## both missing: --> (n x 1)
ncol <- 1L
nrow <- n
} else {
if(n %% ncol != 0) warning("'ncol' is not a factor of length(x)")
nrow <- as.integer(ceiling(n / ncol))
}
} else {
if(missing(ncol)) {
if(n %% nrow != 0) warning("'nrow' is not a factor of length(x)")
ncol <- as.integer(ceiling(n / nrow))
} else { ## both nrow and ncol specified
if(ncol * nrow < n) stop("nrow * ncol < length(x)")
if(ncol * nrow != n) warning("nrow * ncol != length(x)")
}
}
## now nrow * ncol >= n
## ~~~~~~~~~~~~~~~~
cld <- getClassDef(cx)
kind <- .M.kindC(cld) # "d", "n", "l", "z", ...
has.x <- kind != "n"
r <- new(paste(kind,"gTMatrix", sep=''), Dim = c(nrow, ncol))
## now "compute" the (i,j,x) slots given x@(i,x)
i0 <- x@i - 1L
if(byrow) {
r@j <- i0 %% ncol
r@i <- i0 %/% ncol
} else { # default{byrow = FALSE}
r@i <- i0 %% nrow
r@j <- i0 %/% nrow
}
if(has.x) r@x <- x@x
r
}
setMethod("length", "sparseVector", function(x) x@length)
setMethod("show", signature(object = "sparseVector"),
function(object) {
n <- object@length
cl <- class(object)
cat(sprintf('sparse vector (nnz/length = %d/%d) of class "%s"\n',
length(object@i), n, cl))
maxp <- max(1, getOption("max.print"))
if(n <= maxp) {
prSpVector(object, maxp = maxp)
} else { # n > maxp : will cut length of what we'll display :
## cannot easily show head(.) & tail(.) because of "[1] .." printing of tail
prSpVector(object[seq_len(maxp)], maxp = maxp)
cat(" ............................",
"\n ........suppressing ", n - maxp,
" entries in show(); maybe adjust 'options(max.print= *)'",
"\n ............................\n\n", sep='')
}
invisible(object)
})
prSpVector <- function(x, digits = getOption("digits"),
maxp = getOption("max.print"), zero.print = ".")
{
cld <- getClassDef(cl <- class(x))
stopifnot(extends(cld, "sparseVector"), maxp >= 1)
if(is.logical(zero.print))
zero.print <- if(zero.print) "0" else " "
## kind <- .M.kindC(cld)
## has.x <- kind != "n"
n <- x@length
if(n > maxp) {# n > maxp =: nn : will cut length of what we'll display :
x <- x[seq_len(maxp)] # need "[" to work ...
n <- as.integer(maxp)
}
xi <- x@i
logi <- extends(cld, "lsparseVector") || extends(cld, "nsparseVector")
cx <- if(logi) rep.int("N", n) else character(n)
cx[ -xi ] <- zero.print
cx[ xi ] <- {
if(logi) "|" else
## numeric (or --not yet-- complex): 'has.x' in any cases
format(x@x, digits = digits)
}
## right = TRUE : cheap attempt to get better "." alignment
print(cx, quote = FALSE, right = TRUE, max = maxp)
invisible(x) # TODO? in case of n > maxp, "should" return original x
}
## This is a simplified intI() {-> ./Tsparse.R } -- for sparseVector indexing:
intIv <- function(i, n)
{
## Purpose: translate numeric | logical index into 1-based integer
## --------------------------------------------------------------------
## Arguments: i: index vector (numeric | logical)
## n: array extent { == length(.) }
if(missing(i))
seq_len(n)
else if(is(i, "numeric")) {
storage.mode(i) <- "integer"
if(any(i < 0L)) {
if(any(i > 0L))
stop("you cannot mix negative and positive indices")
seq_len(n)[i]
} else {
if(length(i) && max(i) > n)
stop("indexing out of range 0:",n)
if(any(z <- i == 0))
i <- i[!z]
i
}
}
else if (is(i, "logical")) {
seq_len(n)[i]
} else stop("index must be numeric or logical for 'sparseVector' indexing")
}
setMethod("[", signature(x = "sparseVector", i = "index"),
function (x, i, j, ..., drop) {
cld <- getClassDef(class(x))
has.x <- !extends(cld, "nsparseVector")
n <- x@length
ii <- intIv(i, n)
anyDup <- any(iDup <- duplicated(ii))
m <- match(x@i, ii, nomatch = 0)
sel <- m > 0L
x@length <- length(ii)
x@i <- m[sel]
if(anyDup) {
i.i <- match(ii[iDup], ii)
jm <- lapply(i.i, function(.) which(. == m))
sel <- c(which(sel), unlist(jm))
x@i <- c(x@i, rep.int(which(iDup), sapply(jm, length)))
}
if (has.x)
x@x <- x@x[sel]
x
})
## This is much analogous to replTmat in ./Tsparse.R:
replSPvec <- function (x, i, value)
{
n <- x@length
ii <- intIv(i, n)
lenRepl <- length(ii)
lenV <- length(value)
if(lenV == 0) {
if(lenRepl != 0)
stop("nothing to replace with")
else return(x)
}
## else: lenV := length(value) > 0
if(lenRepl %% lenV != 0)
stop("number of items to replace is not a multiple of replacement length")
anyDup <- any(duplicated(ii))
if(anyDup) { ## multiple *replacement* indices: last one wins
## TODO: in R 2.6.0 use duplicate(*, fromLast=TRUE)
ir <- lenRepl:1
keep <- match(ii, ii[ir]) == ir
ii <- ii[keep]
lenV <- length(value <- rep(value, length = lenRepl)[keep])
lenRepl <- length(ii)
}
cld <- getClassDef(class(x))
has.x <- !extends(cld, "nsparseVector")
m <- match(x@i, ii, nomatch = 0)
sel <- m > 0L
## the simplest case
if(all0(value)) { ## just drop the non-zero entries
if(any(sel)) { ## non-zero there
x@i <- x@i[!sel]
if(has.x)
x@x <- x@x[!sel]
}
return(x)
}
## else -- some( value != 0 ) --
if(lenV > lenRepl)
stop("too many replacement values")
else if(lenV < lenRepl)
value <- rep(value, length = lenRepl)
## now: length(value) == lenRepl
v0 <- is0(value)
## value[1:lenRepl]: which are structural 0 now, which not?
if(any(sel)) {
## indices of non-zero entries -- WRT to subvector
iN0 <- m[sel] ## == match(x@i[sel], ii)
## 1a) replace those that are already non-zero with new val.
vN0 <- !v0[iN0]
if(any(vN0) && has.x)
x@x[sel][vN0] <- value[iN0[vN0]]
## 1b) replace non-zeros with 0 --> drop entries
if(any(!vN0)) {
i <- which(sel)[!vN0]
if(has.x)
x@x <- x@x[-i]
x@i <- x@i[-i]
}
iI0 <- if(length(iN0) < lenRepl)
seq_len(lenRepl)[-iN0]
} else iI0 <- seq_len(lenRepl)
if(length(iI0) && any(vN0 <- !v0[iI0])) {
## 2) add those that were structural 0 (where value != 0)
ij0 <- iI0[vN0]
x@i <- c(x@i, ii[ij0])
if(has.x)
x@x <- c(x@x, value[ij0])
}
x
}
setReplaceMethod("[", signature(x = "sparseVector", i = "index", j = "missing",
value = "replValue"),
replSPvec)
## a "method" for c(<(sparse)Vector>, <(sparse)Vector>):
## FIXME: This is not exported, nor used (nor documented)
c2v <- function(x, y) {
## these as(., "sp..V..") check input implicitly:
cx <- class(x <- as(x, "sparseVector"))
cy <- class(y <- as(y, "sparseVector"))
if(cx != cy) { ## find "common" class; result does have 'x' slot
cxy <- c(cx,cy)
commType <- {
if(all(cxy %in% c("nsparseVector", "lsparseVector")))
"lsparseVector"
else { # ==> "numeric" ("integer") or "complex"
xslot1 <- function(u, cl.u)
if(cl.u != "nsparseVector") u@x[1] else TRUE
switch(typeof(xslot1(x, cx) + xslot1(y, cy)),
## "integer", "double", or "complex"
"integer" = "isparseVector",
"double" = "dsparseVector",
"complex" = "zsparseVector")
}
}
if(cx != commType) x <- as(x, commType)
if(cy != commType) y <- as(y, commType)
cx <- commType
}
## now *have* common type -- transform 'x' into result:
nx <- x@length
x@length <- nx + y@length
x@i <- c(x@i, nx + y@i)
if(cx != "nsparseVector")
x@x <- c(x@x, y@x)
x
}
### Group Methods (!)
## o "Ops" , "Arith", "Compare" : ---> in ./Ops.R
|