File: dsCMatrix.R

package info (click to toggle)
rmatrix 0.999375-43-1
  • links: PTS
  • area: main
  • in suites: squeeze
  • size: 8,068 kB
  • ctags: 2,395
  • sloc: ansic: 37,941; makefile: 216; sh: 128
file content (171 lines) | stat: -rw-r--r-- 6,409 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
#### Symmetric Sparse Matrices in compressed column-oriented format

setAs("dgCMatrix", "dsCMatrix",
      function(from) {
	  if(!exists(".warn.dsC")) { ## now only warn *once* ..
	      warning("as(.,\"dsCMatrix\") is deprecated; do use as(., \"symmetricMatrix\")")
	      assign(".warn.dsC", "DONE", envir = .GlobalEnv)
	  }
	  as(from, "symmetricMatrix")
      })

## Specific conversions, should they be necessary.  Better to convert as
## as(x, "TsparseMatrix") or as(x, "denseMatrix")

## Moved to ./Csparse.R
## setAs("dsCMatrix", "dsTMatrix",
##       function(from) .Call(Csparse_to_Tsparse, from, FALSE))

setAs("dsCMatrix", "dgTMatrix", # needed for show(), image()
      function(from)
      ## pre-Cholmod -- FIXME: get rid of
      .Call(dsCMatrix_to_dgTMatrix, from))

setAs("dsCMatrix", "dgeMatrix",
      function(from) as(as(from, "dgTMatrix"), "dgeMatrix"))

setAs("dsCMatrix", "matrix",
      function(from) as(as(from, "generalMatrix"), "matrix"))
setAs("matrix", "dsCMatrix",
      function(from)
      as(as(as(from, "CsparseMatrix"), "symmetricMatrix"), "dMatrix"))

setAs("dsCMatrix", "lsCMatrix",
      function(from) new("lsCMatrix", i = from@i, p = from@p, uplo = from@uplo,
                         x = as.logical(from@x),
                         Dim = from@Dim, Dimnames = from@Dimnames))
setAs("dsCMatrix", "nsCMatrix",
      function(from) new("nsCMatrix", i = from@i, p = from@p, uplo = from@uplo,
                         Dim = from@Dim, Dimnames = from@Dimnames))

setAs("dsCMatrix", "dgCMatrix",
      function(from) .Call(Csparse_symmetric_to_general, from))

setAs("dsCMatrix", "dsyMatrix",
      function(from) as(from, "denseMatrix"))

## have rather tril() and triu() methods than
## setAs("dsCMatrix", "dtCMatrix", ....)
setMethod("tril", "dsCMatrix",
	  function(x, k = 0, ...) {
	      if(x@uplo == "L" && k == 0)
		  ## same internal structure (speedup potential !?)
		  new("dtCMatrix", uplo = x@uplo, i = x@i, p = x@p,
		      x = x@x, Dim = x@Dim, Dimnames = x@Dimnames)
	      else tril(as(x, "dgCMatrix"), k = k, ...)
	  })

setMethod("triu", "dsCMatrix",
	  function(x, k = 0, ...) {
	      if(x@uplo == "U" && k == 0)
		  ## same internal structure (speedup potential !?)
		  new("dtCMatrix", uplo = x@uplo, i = x@i, p = x@p,
		      x = x@x, Dim = x@Dim, Dimnames = x@Dimnames)
	      else triu(as(x, "dgCMatrix"), k = k, ...)
	  })

setMethod("solve", signature(a = "dsCMatrix", b = "ddenseMatrix"),
          function(a, b, ...) {
              if (class(b) != "dgeMatrix")
                  b <- .Call(dup_mMatrix_as_dgeMatrix, b)
              .Call(dsCMatrix_matrix_solve, a, b)
          },
          valueClass = "dgeMatrix")
setMethod("solve", signature(a = "dsCMatrix", b = "denseMatrix"),
	  ## only triggers for diagonal*, ldense*.. (but *not* ddense: above)
	  function(a, b, ...)
	      .Call(dsCMatrix_matrix_solve, a,
		    as(.Call(dup_mMatrix_as_geMatrix, b), "dgeMatrix")))

setMethod("solve", signature(a = "dsCMatrix", b = "matrix"),
          function(a, b, ...)
          .Call(dsCMatrix_matrix_solve, a,
                .Call(dup_mMatrix_as_dgeMatrix, b)),
          valueClass = "dgeMatrix")

setMethod("solve", signature(a = "dsCMatrix", b = "numeric"),
          function(a, b, ...)
          .Call(dsCMatrix_matrix_solve, a,
                .Call(dup_mMatrix_as_dgeMatrix, b)),
          valueClass = "dgeMatrix")

## `` Fully-sparse'' solve() :
setMethod("solve", signature(a = "dsCMatrix", b = "dsparseMatrix"),
	  function(a, b, ...) {
	      if (!is(b, "CsparseMatrix"))
		  b <- as(b, "CsparseMatrix")
	      if (is(b, "symmetricMatrix")) ## not supported (yet) by cholmod_spsolve
		  b <- as(b, "dgCMatrix")
	      .Call(dsCMatrix_Csparse_solve, a, b)
	  })


setMethod("chol", signature(x = "dsCMatrix"),
	  function(x, pivot = FALSE, ...) .Call(dsCMatrix_chol, x, pivot),
	  valueClass = "dtCMatrix")

setMethod("Cholesky", signature(A = "dsCMatrix"),
          ## signature(): leaving away (perm, LDL,..), but specify below:
          ##              <==> all "ANY"
          function(A, perm = TRUE, LDL = !super, super = FALSE, Imult = 0, ...)
          .Call(dsCMatrix_Cholesky, A, perm, LDL, super, Imult))


setMethod("t", signature(x = "dsCMatrix"),
          function(x) .Call(Csparse_transpose, x, FALSE),
          valueClass = "dsCMatrix")

.diag.dsC <- function(x, Chx = Cholesky(x, LDL=TRUE), res.kind = "diag") {
    force(Chx)
    stopifnot(is.integer(Chx@p), is.double(Chx@x))
    .Call(diag_tC, Chx@p, Chx@x, Chx@perm, res.kind)
}

## FIXME:  kind = "diagBack" is not yet implemented
##	would be much more efficient, but there's no CHOLMOD UI (?)
##
## Note: for det(), permutation is unimportant;
##       for diag(), apply *inverse* permutation
##    	q <- p ; q[q] <- seq_along(q); q

ldet1.dsC <- function(x, ...) .Call(CHMfactor_ldetL2, Cholesky(x, ...))
## these are slightly faster (ca. 3 to 4 %):
ldet2.dsC <- function(x, ...) {
    Ch <- Cholesky(x, super = FALSE, ...)
    .Call(diag_tC, Ch@p, Ch@x, Ch@perm, "sumLog")
}
## only very slightly ( ~ < 1% ) faster (than "ldet2"):
ldet3.dsC <- function(x, perm = TRUE)
    .Call(dsCMatrix_LDL_D, x, perm=perm, "sumLog")

setMethod("determinant", signature(x = "dsCMatrix", logarithm = "missing"),
          function(x, logarithm, ...) determinant(x, TRUE))

setMethod("determinant", signature(x = "dsCMatrix", logarithm = "logical"),
	  function(x, logarithm, ...)
      {
	  if((n <- x@Dim[1]) <= 1)
	      return(mkDet(x@x, logarithm))
	  Chx <- tryCatch(suppressWarnings(Cholesky(x, LDL=TRUE)),
                          error = function(e) NULL)
	  ## or
	  ## ldet <- .Call("CHMfactor_ldetL2", Chx) # which would also work
	  ##				     when Chx <- Cholesky(x, super=TRUE)
          ## ldet <- tryCatch(.Call(dsCMatrix_LDL_D, x, perm=TRUE, "sumLog"),
	  ## if(is.null(ldet))

          if(is.null(Chx))  ## we do *not* have a positive definite matrix
	      detSparseLU(x, logarithm)
	  else {
              d <- .Call(diag_tC, Chx@p, Chx@x, Chx@perm, res.kind = "diag")
	      mkDet(d, logarithm=logarithm)
          }
      })

## setMethod("writeHB", signature(obj = "dsCMatrix"),
##           function(obj, file, ...) {
##               .Deprecated("writeMM")
##               .Call(Matrix_writeHarwellBoeing,
##                     if (obj@uplo == "U") t(obj) else obj,
##                     as.character(file), "DSC")
##           })