1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
|
\name{lsparseMatrix-classes}
\title{Sparse logical matrices}
\docType{class}
\alias{lsparseMatrix-class}
\alias{lgCMatrix-class}
\alias{ltCMatrix-class}
\alias{lsCMatrix-class}
\alias{lgRMatrix-class}
\alias{ltRMatrix-class}
\alias{lsRMatrix-class}
\alias{lgTMatrix-class}
\alias{ltTMatrix-class}
\alias{lsTMatrix-class}
% Group(like)
\alias{Ops,lsparseMatrix,lsparseMatrix-method}
\alias{Arith,lsparseMatrix,Matrix-method}
\alias{Arith,Matrix,lsparseMatrix-method}
\alias{Arith,lgCMatrix,lgCMatrix-method}
\alias{Arith,lgTMatrix,lgTMatrix-method}
\alias{Compare,lsparseMatrix,lsparseMatrix-method}
\alias{Logic,lsparseMatrix,lsparseMatrix-method}
\alias{Logic,lgCMatrix,lgCMatrix-method}
\alias{Logic,lgTMatrix,lgTMatrix-method}
\alias{Logic,lsCMatrix,lsCMatrix-method}
\alias{Logic,ltCMatrix,ltCMatrix-method}
\alias{-,lsparseMatrix,missing-method}
\alias{!,lsparseMatrix-method}
%
\alias{\%*\%,lgCMatrix,lgCMatrix-method}
\alias{\%*\%,lsparseMatrix,lsparseMatrix-method}
\alias{\%*\%,lsparseMatrix,ldenseMatrix-method}
\alias{\%*\%,ldenseMatrix,lsparseMatrix-method}
\alias{coerce,lsparseMatrix,matrix-method}
\alias{coerce,lsparseMatrix,dsparseMatrix-method}
\alias{coerce,lgCMatrix,dgCMatrix-method}
\alias{coerce,lgCMatrix,lgTMatrix-method}
\alias{coerce,lgCMatrix,lgeMatrix-method}
\alias{coerce,lgCMatrix,lsCMatrix-method}
\alias{coerce,lgCMatrix,ltCMatrix-method}
\alias{coerce,lgCMatrix,matrix-method}
\alias{coerce,lgTMatrix,dgTMatrix-method}
\alias{coerce,lgTMatrix,lgCMatrix-method}
\alias{coerce,lgTMatrix,lgeMatrix-method}
\alias{coerce,lgTMatrix,lsCMatrix-method}
\alias{coerce,lgTMatrix,ltTMatrix-method}
\alias{coerce,lgTMatrix,matrix-method}
\alias{coerce,lsCMatrix,dgTMatrix-method}
\alias{coerce,lsCMatrix,dsCMatrix-method}
\alias{coerce,lsCMatrix,generalMatrix-method}
\alias{coerce,lsCMatrix,lgCMatrix-method}
\alias{coerce,lsCMatrix,lgTMatrix-method}
\alias{coerce,lsCMatrix,lsTMatrix-method}
\alias{coerce,lsCMatrix,matrix-method}
\alias{coerce,lsTMatrix,dsTMatrix-method}
\alias{coerce,lsTMatrix,lgCMatrix-method}
\alias{coerce,lsTMatrix,lgTMatrix-method}
\alias{coerce,lsTMatrix,lsCMatrix-method}
\alias{coerce,lsTMatrix,lsyMatrix-method}
\alias{coerce,lsTMatrix,matrix-method}
\alias{coerce,ltCMatrix,dMatrix-method}
\alias{coerce,ltCMatrix,dtCMatrix-method}
\alias{coerce,ltCMatrix,lgCMatrix-method}
\alias{coerce,ltCMatrix,ltTMatrix-method}
\alias{coerce,ltCMatrix,matrix-method}
\alias{coerce,ltTMatrix,dtTMatrix-method}
\alias{coerce,ltTMatrix,generalMatrix-method}
\alias{coerce,ltTMatrix,lgCMatrix-method}
\alias{coerce,ltTMatrix,lgTMatrix-method}
\alias{coerce,ltTMatrix,ltCMatrix-method}
\alias{coerce,ltTMatrix,ltrMatrix-method}
\alias{coerce,ltTMatrix,matrix-method}
\alias{coerce,matrix,lgCMatrix-method}
\alias{coerce,matrix,lgTMatrix-method}
\alias{coerce,matrix,lsCMatrix-method}
\alias{coerce,matrix,ltCMatrix-method}
\alias{coerce,matrix,ltTMatrix-method}
%
\alias{crossprod,lgCMatrix,missing-method}
\alias{crossprod,lgTMatrix,missing-method}
\alias{crossprod,lsparseMatrix-method}
\alias{crossprod,lsparseMatrix,missing-method}
\alias{crossprod,lsparseMatrix,lsparseMatrix-method}
\alias{crossprod,lsparseMatrix,ldenseMatrix-method}
\alias{crossprod,ldenseMatrix,lsparseMatrix-method}
\alias{t,lgCMatrix-method}
\alias{t,lgTMatrix-method}
\alias{t,lsCMatrix-method}
\alias{t,ltCMatrix-method}
\alias{t,lsTMatrix-method}
\alias{t,ltTMatrix-method}
\alias{tcrossprod,lgCMatrix,missing-method}
\alias{tcrossprod,lgTMatrix,missing-method}
\alias{tcrossprod,lsparseMatrix,missing-method}
\alias{which,lgTMatrix-method}
\alias{which,lsparseMatrix-method}
\alias{which,lsparseVector-method}
\alias{which,lsTMatrix-method}
\alias{which,ltTMatrix-method}
%
\description{The \code{lsparseMatrix} class is a virtual class of sparse
matrices with \code{TRUE}/\code{FALSE} entries. Only the positions of the
elements that are \code{TRUE} are stored. These can be stored in the
``triplet'' form (classes \code{lgTMatrix}, \code{lsTMatrix}, and
\code{ltTMatrix} which really contain pairs, not triplets) or in
compressed column-oriented form (classes \code{lgCMatrix},
\code{lsCMatrix}, and \code{ltCMatrix}) or in compressed row-oriented
form (classes \code{lgRMatrix}, \code{lsRMatrix}, and
\code{ltRMatrix}). The second letter in the name of these non-virtual
classes indicates \code{g}eneral, \code{s}ymmetric, or \code{t}riangular.
}
\section{Objects from the Class}{
Objects can be created by calls of the form \code{new("lgCMatrix",
...)} and so on. More frequently objects are created by coercion of
a numeric sparse matrix to the logical form for use in
the symbolic analysis phase
of an algorithm involving sparse matrices. Such algorithms often
involve two phases: a symbolic phase wherein the positions of the
non-zeros in the result are determined and a numeric phase wherein the
actual results are calculated. During the symbolic phase only the
positions of the non-zero elements in any operands are of interest,
hence any numeric sparse matrices can be treated as logical sparse
matrices.
}
\section{Slots}{
\describe{
\item{\code{x}:}{Object of class \code{"logical"}, i.e., either
\code{TRUE}, \code{\link{NA}}, or \code{FALSE}.}
\item{\code{uplo}:}{Object of class \code{"character"}. Must be
either "U", for upper triangular, and "L", for lower
triangular. Present in the triangular and symmetric classes but not
in the general class.}
\item{\code{diag}:}{Object of class \code{"character"}. Must be
either \code{"U"}, for unit triangular (diagonal is all ones), or
\code{"N"} for non-unit. The implicit diagonal elements are not
explicitly stored when \code{diag} is \code{"U"}. Present in the
triangular classes only.}
\item{\code{p}:}{Object of class \code{"integer"} of pointers, one
for each column (row), to the initial (zero-based) index of elements in
the column. Present in compressed column-oriented and compressed
row-oriented forms only.}
\item{\code{i}:}{Object of class \code{"integer"} of length nnzero
(number of non-zero elements). These are the row numbers for
each TRUE element in the matrix. All other elements are FALSE.
Present in triplet and compressed column-oriented forms only.}
\item{\code{j}:}{Object of class \code{"integer"} of length nnzero
(number of non-zero elements). These are the column numbers for
each TRUE element in the matrix. All other elements are FALSE.
Present in triplet and compressed column-oriented forms only.}
\item{\code{Dim}:}{Object of class \code{"integer"} - the dimensions
of the matrix.}
}
}
\section{Methods}{
\describe{
\item{coerce}{\code{signature(from = "dgCMatrix", to = "lgCMatrix")}}
\item{t}{\code{signature(x = "lgCMatrix")}: returns the transpose
of \code{x}}
\item{which}{\code{signature(x = "lsparseMatrix")}, semantically
equivalent to \pkg{base} function \code{\link{which}(x, arr.ind)};
for details, see the \code{\linkS4class{lMatrix}} class documentation.}
}
}
%\references{}
%\author{}
%\note{}
\seealso{
the class \code{\linkS4class{dgCMatrix}}
}
\examples{
(m <- Matrix(c(0,0,2:0), 3,5, dimnames=list(LETTERS[1:3],NULL)))
(lm <- (m > 1)) # lgC
!lm # no longer sparse
stopifnot(is(lm,"lsparseMatrix"),
identical(!lm, m <= 1))
data(KNex)
str(mmG.1 <- (KNex $ mm) > 0.1)# "lgC..."
table(mmG.1@x)# however with many ``non-structural zeros''
## from logical to nz_pattern -- okay when there are no NA's :
nmG.1 <- as(mmG.1, "nMatrix") # <<< has "TRUE" also where mmG.1 had FALSE
## from logical to "double"
dmG.1 <- as(mmG.1, "dMatrix") # has '0' and back:
lmG.1 <- as(dmG.1, "lMatrix") # has no extra FALSE, i.e. drop0() included
stopifnot(identical(nmG.1, as((KNex $ mm) != 0,"nMatrix")),
validObject(lmG.1), all(lmG.1@x),
# same "logical" but lmG.1 has no 'FALSE' in x slot:
all(lmG.1 == mmG.1))
class(xnx <- crossprod(nmG.1))# "nsC.."
class(xlx <- crossprod(mmG.1))# "dsC.." : numeric
is0 <- (xlx == 0)
mean(as.vector(is0))# 99.3\% zeros: quite sparse, but
table(xlx@x == 0)# more than half of the entries are (non-structural!) 0
stopifnot(isSymmetric(xlx), isSymmetric(xnx),
## compare xnx and xlx : have the *same* non-structural 0s :
sapply(slotNames(xnx),
function(n) identical(slot(xnx, n), slot(xlx, n))))
}
\keyword{classes}
\keyword{algebra}
|