File: Simple.R

package info (click to toggle)
rmatrix 0.999375-43-1
  • links: PTS
  • area: main
  • in suites: squeeze
  • size: 8,068 kB
  • ctags: 2,395
  • sloc: ansic: 37,941; makefile: 216; sh: 128
file content (754 lines) | stat: -rw-r--r-- 27,656 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
#### Currently a collection of simple tests
##	(since 'Matrix' takes long to load, rather have fewer source files!)

##-------- *BEFORE* attaching Matrix: --------------------------------
str(Matrix::Matrix)# -> load the namespace
T <- new("ngTMatrix", i=0L, j=2L, Dim = c(2L,6L))
T
as(T, "CsparseMatrix")
## gave Error in asMethod(object) : could not find function ".M.classEnv"
## from  0.999375-23 to *-25

## another even shorter version of this:
n <- new("dgCMatrix")
n
## this:
m <- Matrix::Matrix(cbind(1,0,diag(x=2:4)))
m
##--------------------------------------------------------------------

library(Matrix)

source(system.file("test-tools.R", package = "Matrix"))# identical3() etc

if(interactive()) {
    options(error = recover)
} else options(Matrix.verbose = TRUE)# to show Matrix.msg()s

### Matrix() ''smartness''
(d4 <- Matrix(diag(4)))
(z4 <- Matrix(0*diag(4)))
(o4 <- Matrix(1+diag(4)))
(tr <- Matrix(cbind(1,0:1)))
(m4 <- Matrix(cbind(0,rbind(6*diag(3),0))))
dm4 <- Matrix(m4, sparse = FALSE)
class(mN <-  Matrix(NA, 3,4)) # NA *is* logical
validObject(Matrix(NA))
bd4 <- bdiag(m4,dm4,m4)
stopifnot(isValid(o4, "dsyMatrix"),
          isValid(m4, "dtCMatrix"),
          validObject(dm4), validObject(mN),
          identical(bdiag(m4), bdiag(dm4)),
          identical(bd4@p, c(0L,0:3,3:6,6:9)),
          identical(bd4@i, c(0:2, 4:6, 8:10)), bd4@x == 6
          )
assert.EQ.mat(dm4, as(m4, "matrix"))
assert.EQ.mat(mN, matrix(NA, 3,4))
assert.EQ.mat(bdiag(diag(4)), diag(4))
sL <- Matrix(, 3,4, sparse=TRUE)# -> "lgC"
trS <- Matrix(tr, sparse=TRUE)# failed in 0.9975-11
stopifnot(isValid(d4, "diagonalMatrix"),   isValid(z4,  "diagonalMatrix"),
          isValid(tr, "triangularMatrix"), isValid(trS, "triangularMatrix"),
          all(is.na(sL@x)), ## not yet:  all(is.na(sL)),
          !any(sL, na.rm=TRUE), all(!sL, na.rm=TRUE),
          validObject(Matrix(c(NA,0), 4, 3, byrow = TRUE)),
          validObject(Matrix(c(NA,0), 4, 4)),
          isValid(Matrix(c(NA,0,0,0), 4, 4), "sparseMatrix"))
I <- i1 <- I1 <- Diagonal(1)
I1[1,1] <- i1[1, ] <- I [ ,1] <- NA
stopifnot(identical3(I,i1,I1))
image(d4) # gave infinite recursion

I <- Diagonal(3); I[,1] <- NA; I[2,2] <- NA ; I[3,] <- NaN
stopifnot(isValid(I, "sparseMatrix"))
I # gave error in printSpMatrix() - because of R bug in format.info()

L <- spMatrix(9, 30, i = rep(1:9, 3), 1:27, (1:27) %% 4 != 1)
M <- drop0(crossprod(L))
diag(M) <- diag(M) + 5 # to make it pos.def.
M. <- M[1:12,1:12] # small ex
N3 <- as(Matrix(upper.tri(diag(3))), "nMatrix")
isValid(bdN <- bdiag(N3, N3),"nsparseMatrix")

stopifnot(identical(L, L == TRUE), ## used to give infinite recursion
          all(drop0((0 - L) != 0) == drop0(L)))
L[sample(length(L), 10)] <- NA
ll <- as(L,"logical")
stopifnot(all.equal(mean(L,  na.rm=TRUE),
		    mean(ll, na.rm=TRUE), tol= 1e-14),
	  all.equal(mean(L,  na.rm=TRUE, trim=1/4),
		    mean(ll, na.rm=TRUE, trim=1/4), tol= 1e-14))


## Examples where  is.na(.) was wrong:
validObject(sc <- new("dsCMatrix", i=as.integer(c(0,0:1,1:2,0:1,3)), Dim=c(4L,4L),
                      p = c(0L,1L,3L,5L,8L), x = c(0,NA,NA,0:1,0,NA,1)))
validObject(gc <- as(sc, "generalMatrix"))

stopifnot(isSymmetric(M), isSymmetric(M.),
	  is(bdiag(M., M.),"symmetricMatrix"),
	  is(bdN, "triangularMatrix"),
          all(sc == gc | (is.na(sc) & is.na(gc))),
	  all.equal(N3,N3),
	  tail(all.equal(N3, t(N3)), 1) == all.equal(1,-1),# ~= "Mean relative difference: 2"
          all((bdN != t(bdN)) == (bdN + t(bdN))), # <nsparse> != <nsparse>  failed to work...
	  !any((0+bdN) > bdN), # <dsparse> o <nsparse>
	  !any(bdN != (0+bdN)), # <nsparse> o <dsparse>
	  length(grep("Length", all.equal(M., (vM <- as.vector(M.))))) > 0,
	  identical(M., (M2 <- Matrix(vM, 12,12))),
	  all.equal(M., M2, tol=0)
	  )

## large sparse ones: these now directly "go sparse":
str(m0 <- Matrix(0,     nrow=100, ncol = 1000))
str(l0 <- Matrix(FALSE, nrow=100, ncol = 200))
stopifnot(all(!l0),
          identical(FALSE, any(l0)))

## really large {length(<dense equivalent>) is beyond R's limits}:
op <- options(warn = 2) # warnings here are errors
n <- 50000L
Lrg <- new("dgTMatrix", Dim = c(n,n))
diag(Lrg[2:9,1:8]) <- 1:8
## ==:  Lrg[2:9,1:8] <- `diag<-`(Lrg[2:9,1:8], 1:8)
e1 <- try(Lrg == Lrg) # error message almost ok
e2 <- try(!Lrg) # error message was "bad", now perfect
ina <- is.na(Lrg)# "all FALSE"
stopifnot(grep("too large", e1) == 1,
          grep("too large", e2) == 1,
          !any(ina))# <- gave warning previously
stopifnot(suppressWarnings(any(Lrg)))# (double -> logical  warning)

## with dimnames:
m. <- matrix(c(0, 0, 2:0), 3, 5)
dimnames(m.) <- list(LETTERS[1:3], letters[1:5])
(m0 <- m <- Matrix(m.))
m@Dimnames[[2]] <- m@Dimnames[[1]]
## not valid anymore:
(val <- validObject(m, test=TRUE)); stopifnot(is.character(val))
dm <- as(m0, "denseMatrix")
stopifnot(all.equal(rcond(dm), rcond(m.), tol = 1e-14),
	  ##^^^^^^^ dm and m. are both dense, interestingly small differences
	  ## show in at least one case of optimized BLAS
	  all.equal(rcond(dm), 0.4899474520656))
rm(m)

###--  Sparse Triangular :

g5 <- new("dgCMatrix", Dim = c(5L, 5L),
          x = c(10, 1, 3, 10, 1, 10, 1, 10, 10),
          i = c(0L,2L,4L, 1L, 3L,2L,4L, 3L, 4L),
          p = c(0L, 3L, 5L, 7:9))
t5 <- as(g5, "triangularMatrix") # fine
stopifnot(class(t5) == "dtCMatrix",
          identical(t5, tril(g5)))
## This is really a regression test for 'methods::selectMethod()'
## Maybe move to R once 'Matrix' is recommended
sm <- selectMethod(coerce, c("dgCMatrix", "triangularMatrix"), verbose=TRUE)
stopifnot(identical(sm(g5), t5))


(t1 <- new("dtTMatrix", x= c(3,7), i= 0:1, j=3:2,
           Dim= as.integer(c(4,4))))
## Diagonal  o  Sparse
I4 <- Diagonal(4)
D4 <- Diagonal(4, x=1:4)
validObject(t2  <-   t1  + I4)
validObject(tt2 <- t(t1) + I4)
validObject(t1c <- as(t1, "CsparseMatrix"))
validObject(t2c <- as(t2, "CsparseMatrix"))
stopifnot(validObject(t1),
          isValid(2 * I4, "diagonalMatrix"),
          isValid(D4 * 3, "diagonalMatrix"),
          isValid(I4 / 5, "diagonalMatrix"),
          isValid(D4 / 2, "diagonalMatrix"),
          identical(t1, t(t(t1))),
          identical(t1c, t(t(t1c))),
          isValid(t1c + I4,"triangularMatrix"), isValid(t2c + I4,"triangularMatrix"),
          c(class(t2), class(t1c), class(t2c), class(tt2)) == "dtCMatrix",
          identical(t(tt2), t2))
assert.EQ.mat(t1, as(t1c, "matrix"))
D4. <- D4 * (M4 <- Matrix(1:4, 4,4))
D4p <- M4 + D4
Lg1 <- D4 > 0 & D4 > 1
nLg <- !Lg1
nnLg <- !nLg
D4m <- D4 * 4:1
assert.EQ.mat(D4., diag(x= (1:4)^2))
assert.EQ.mat(D4p, diag(x= (1:4)) + (1:4))
assert.EQ.mat(D4m, diag(x=c(4,6,6,4)))
assert.EQ.mat(Lg1, diag(x= c(FALSE, rep(TRUE,3))))
stopifnot(is(Lg1, "diagonalMatrix"), is(D4m, "diagonalMatrix"),
	  is(D4., "diagonalMatrix"),
          is(nLg, "symmetricMatrix"), is(nnLg, "symmetricMatrix"),
          identical3(Lg1, Matrix(nnLg), as(nnLg, "diagonalMatrix")),
          all(Lg1 != (!Lg1)))


## as(<diag>, <anything>) :
str(cls <- names(getClass("Matrix")@subclasses))# all Matrix classes
for(cl in cls)
    if(canCoerce(I4, cl)) {
	cat(cl,":")
	M  <- as(I4, cl)
	M. <- as(D4, cl)
        stopifnot(diag(4) == as(M,"matrix"),
                  if(is(cl,"dMatrix")) diag(x=1:4) == as(M.,"matrix") else TRUE)
	cat(" [Ok]\n")
    }
s4 <- as(D4,"sparseMatrix")
v <- c(11,2,2,12); s4[2:3,2:3] <- v; validObject(s4)
s4. <- D4; s4.[2:3,2:3] <- v; validObject(s4.)
stopifnot(all(s4 == s4.))
## now assign symmetrically to symmetricMatrix
s4 <- as(as(D4,"sparseMatrix"),"symmetricMatrix")
s4[2:3,2:3] <- v
validObject(s4)
stopifnot(is(s4,"symmetricMatrix"))
assert.EQ.mat(s4, as(s4.,"matrix"),tol=0)

## lower-triangular unit-diagonal
L <- new("dtCMatrix", i = 1L, p = c(0:1, 1L), Dim = c(2L, 2L),
         x = 0.5, uplo = "L", diag = "U")
stopifnot(range(L) == 0:1, all.equal(mean(L), 5/8))

## from  0-diagonal to unit-diagonal triangular {low-level step}:
tu <- t1 ; tu@diag <- "U"
tu
validObject(cu <- as(tu, "dtCMatrix"))
validObject(cnu <- Matrix:::diagU2N(cu))# <- testing diagU2N
validObject(tu. <- as(cu, "dtTMatrix"))
validObject(tt <- as(cu, "TsparseMatrix"))
stopifnot(## NOT: identical(tu, tu.), # since T* is not unique!
	  identical(cu, as(tu., "dtCMatrix")),
          length(cnu@i) == length(cu@i) + nrow(cu),
          identical(cu, Matrix:::diagN2U(cnu)),# <- testing diagN2U
	  all(cu >= 0, na.rm = TRUE), all(cu >= 0),
	  any(cu >= 7))
validObject(tcu <- t(cu))
validObject(ttu <- t(tu))
validObject(ltu <- as(ttu, "lMatrix"))
validObject(ldtu <- as(ltu, "denseMatrix"))
validObject(Cltu <- as(ltu, "CsparseMatrix"))
stopifnot(identical(asCsp(ttu > 0), asCsp(ltu)),
          all(ltu == as(ttu > 0,"denseMatrix")))
ltu - (ttu > 0) # failed
assert.EQ.mat(cu,  as(tu,"matrix"), tol=0)
assert.EQ.mat(cnu, as(tu,"matrix"), tol=0)

C <- suppressWarnings(Matrix(c(0,1,0,0), 5,5)) + Diagonal(5)
(tU <- Matrix:::diagN2U(tril(C))) # dtC Unitriangular
ntU <- as(tU, "nMatrix")
nT <- as(ntU, "TsparseMatrix")
R <- as(tU, "RsparseMatrix")
Tt <- Matrix:::diagU2N(R) # used to accidentally drop the diag.
stopifnot(R@x == c(1,1,1), diag(Tt) == 1)

lcu <- new("ltCMatrix", Dim = c(4L, 4L), i = c(0:1, 0L), p = c(0L, 0:3),
           x = c(TRUE, FALSE, FALSE), uplo = "U", diag = "U")
(lTu <- as(lcu,"TsparseMatrix"))# prints wrongly (in Matrix 0.999375-31)
stopifnot(identical3(rowSums(lcu), rowSums(lTu), rowSums(drop0(lcu))))
(ncu <- as(lcu, "nMatrix"))# -- gives the "pattern" of lcu, i.e. FALSE are *there*
ncn <- Matrix:::diagU2N(ncu)
(cncn <- crossprod(ncn))# works -> "nsCMatrix"
stopifnot(identical(ncu, as(lcu,"nsparseMatrix")),
	  identical(rowSums(ncu), c(3:1, 1L)),
	  Q.eq(ncn, ncu),
	  Q.eq(crossprod(drop0(lcu)), crossprod(lcu)),# crossprod works -> "dsCMatrix"
	  identical(crossprod(ncu), cncn),
	  Q.eq(cncn, t(ncu) %*% ncu)) #used to seg.fault

U <- new("dtCMatrix", Dim = c(6L, 6L),
	 i = c(0:1, 0L, 2:3, 1L, 4L),
	 p = c(0L,0L,0L, 2:3, 5L, 7L),
	 x = rep.int(-0.5, 7), diag = "U")
validObject(U)
U. <- solve(iU <- solve(U))#-> gave segmentation fault
stopifnot(validObject(U), ## had a case where solve(U) modified U !
	  validObject(iU),
	  validObject(U.),
	  ## no rounding error, since have iU@x * 8 is integer :
	  identical(U, Matrix:::diagN2U(drop0(U.))))

## <sparse> o <numeric> (of length > 1):
stopifnot(isValid(tm <- tu * 1:8, "sparseMatrix"),
          identical4(tm, cu * 1:8, 1:8 * cu, 1:8 * tu))

cu[1,2] <- tu[1,2] <- NA
mu <- as(tu,"matrix")
stopifnot(isValid(cu, "CsparseMatrix"), isValid(cu, "triangularMatrix"),
          isValid(tu, "TsparseMatrix"), isValid(tu, "triangularMatrix"),
          identical(cu * 1:8, tu * 1:8), # but are no longer triangular
          all(cu >= 0, na.rm=TRUE), !all(cu >= 1), is.na(all(tu >= 0)),
          ## Csparse_drop: preserves triangularity incl diag="U"
          identical(cu, .Call(Matrix:::Csparse_drop, cu, 0.))
          )
assert.EQ.mat(cu * 1:8, mu * 1:8)

ina <- is.na(as(cu,"matrix"))
## These 3 were each different (2008-03) !!
stopifnot(all(ina == is.na(cu)),
	  all(ina == is.na(as(cu,"generalMatrix"))),
	  all(ina == as(is.na(as(cu,"matrix")),"nMatrix")))


## tu. is diag "U", but tu2 not:
tu2 <- as(as(tu., "generalMatrix"), "triangularMatrix")
assert.EQ.mat(cu, mu, tol=0)
stopifnot(identical3(cu[cu > 1],  tu [tu > 1], mu [mu > 1]),
          identical3(cu <= 1, tu <= 1, as(mu <= 1, "lMatrix")),# all lgeMatrix
	  identical3(cu[cu <= 1], tu[tu <= 1], mu[mu <= 1]),
	  identical3(cu , triu(cu ), t(t(cu))),
	  identical3(tu , triu(tu ), t(t(tu))),
	  identical3(tu., triu(tu.), t(t(tu.))),
	  identical(tu2, triu(tu2)),
	  identical(tcu , tril(tcu)),
	  identical(ttu , tril(ttu)),
	  identical(t(tu), tril(t(tu)))
          )
assert.EQ.mat(triu(cu),   as.matrix(triu(as.matrix(cu))))
for(k in -1:1)
    assert.EQ.mat(tril(cu,k), as.matrix(tril(as.matrix(cu),k)))

(dtr <- Matrix(local({m <- diag(2); m[1,2] <- 3;m})))
identical(dtr, triu(dtr))
assert.EQ.mat(tril(dtr), diag(2))


(t4 <- new("dgTMatrix", i = 3:0, j = 0:3, x = rep(1,4), Dim = as.integer(c(4,4))))
c4 <- as(t4, "CsparseMatrix")
## the same but "dsT" (symmetric)
suppressWarnings(M <- Matrix(c(0, rep(c(0,0:1),4)), 4,4))# warning:.. length [13] is not ..multiple
tt <- as(M, "TsparseMatrix")
stopifnot(all.equal(triu(t4) + tril(t4), c4),
          all.equal(triu(tt) + tril(tt), c4))


###-- Numeric Dense: Crossprod & Solve

set.seed(123)
mm. <- mm <- Matrix(rnorm(500 * 150), nc = 150)
stopifnot(validObject(mm))
xpx <- crossprod(mm)
stopifnot(identical(mm, mm.),# once upon a time, mm was altered by crossprod()
          validObject(xpx))
str(mm) # 'dge*"
str(xpx)# 'dpo*"
xpy <- crossprod(mm, rnorm(500))
res <- solve(xpx, xpy)
str(xpx)# now with Cholesky factor
stopifnot(validObject(xpx),
          validObject(xpy),
          validObject(res))
stopifnot(all.equal(xpx %*% res, xpy, tol= 1e-12))
lp <- xpx >= 1
slp <- as(lp, "sparseMatrix")

ltlp  <-  lp[ lower.tri(lp) ]
sltlp <- slp[ lower.tri(slp) ]
dim(ij <- which(lower.tri(lp), arr.ind = TRUE))
ss <- slp[ij] # now fast (!)
stopifnot(identical4(lp[ij], ltlp, sltlp, as(lp, "matrix")[ij]),
          identical(ss, sltlp),
          isValid(lp, "lsyMatrix"), lp@uplo == "U")

###-- more solve() methods  {was ./solve.R }

## first for "dgeMatrix" and all kinds of RHS :
(m6 <- 1 + as(diag(0:5), "dgeMatrix"))
rcond(m6)
I6 <- as(diag(6), "dgeMatrix")
stopifnot(all.equal(I6, m6 %*% solve(m6)),
          all.equal(I6, solve(m6) %*% m6) )

(i6 <- solve(m6, Matrix(1:6)))
stopifnot(identical(i6, as(cbind(c(-4, rep(1,5))), "dgeMatrix")),
          identical(i6, solve(m6, 1:6)),
          identical(i6, solve(m6, matrix(1:6))),
          identical(i6, solve(m6, matrix(c(1,2,3,4,5,6))))
          )

## solve(<sparse>)
(m <- t1+ t(t1) + Diagonal(4))
i.m <- solve(as.mat(m))
I1 <- m %*% i.m
o4 <- diag(I1)
im <- solve(m)
(I2 <- m %*% im)
(ms <- as(m, "symmetricMatrix"))
## solve(<sparse>, <sparse>):
s.mm <-  solve(m,m)
s.mms <- solve(m, ms)
## these now work "fully-sparse"
s.ms2 <- solve(ms, ms)
s.msm <- solve(ms, m)
I4c <- as(Matrix(diag(4),sparse=TRUE), "generalMatrix")
stopifnot(isValid(im, "Matrix"), isValid(I2, "Matrix"), class(I4c) == "dgCMatrix",
          all.equal(I1, I2, tol = 1e-14),
          all.equal(diag(4), as.mat(I2), tol = 1e-12),
          all.equal(s.mm,  I2, tol = 1e-14),
          all.equal(s.mms, I2, tol = 1e-14),
          all.equal(s.ms2, s.msm, tol = 4e-15),
          all.equal(s.ms2, I4c  , tol = 4e-15),
          abs(o4 - 1) < 1e-14)

image(T125 <- kronecker(kronecker(t5,t5),t5),
      main = paste("T125:",class(T125)))
dim(T3k <- kronecker(t5,kronecker(T125, t5)))
system.time(IT3 <- solve(T3k))# incredibly fast
I. <- drop0(zapsmall(IT3 %*% T3k))
I.. <- Matrix:::diagN2U(I.)
I <- Diagonal(5^5)
stopifnot(isValid(IT3, "dtCMatrix"),
          ## something like the equivalent of  all(I. == Diagonal(3125)) :
          identical(as(I., "diagonalMatrix"), I),
          identical(as(I..,"diagonalMatrix"), I)
          )

###-- row- and column operations  {was ./rowcolOps.R }

set.seed(321)
(m1 <- round(Matrix(rnorm(25), 5), 2))
m1k <- Matrix(round(rnorm(1000), 2), 50, 20)
m.m <- as(m1k, "matrix")
stopifnot(all.equal(colMeans(m1k), colMeans(m.m)),
          all.equal(colSums (m1k), colSums (m.m)),
          all.equal(rowMeans(m1k), rowMeans(m.m)),
          all.equal(rowSums (m1k), rowSums (m.m)))

###-- kronecker for nonsparse uses Matrix(.):
stopifnot(isValid(kr <- kronecker(m1, m6), "Matrix"))
assert.EQ.mat(kr,
              kronecker(as(m1, "matrix"),
                        as(m6, "matrix")), tol = 0)

## sparse:
(kt1 <- kronecker(t1, tu))
kt2 <- kronecker(t1c, cu)
stopifnot(identical(Matrix:::uniq(kt1), Matrix:::uniq(kt2)))
## but kt1 and kt2, both "dgT" are different since entries are not ordered!
ktf <- kronecker(as.matrix(t1), as.matrix(tu))
if(FALSE) # FIXME? our kronecker treats "0 * NA" as "0" for structural-0
assert.EQ.mat(kt2, ktf, tol= 0)
(cs1 <- colSums(kt1))
NA.or.True <- function(x) is.na(x) | x
eq <- (cs1 == colSums(as(kt1, "matrix")))
stopifnot(NA.or.True(eq), identical(is.na(eq), is.na(cs1)))
nt1 <- as(kt1, "nMatrix") # no NA's anymore
(ng1 <- as(as(nt1, "generalMatrix"),"CsparseMatrix")) # ngC
dg1 <- as(ng1, "dMatrix")# dgC
lt1 <- kt1 > 5
nt1 <- as(lt1, "nMatrix")
(colSums(nt1, sparseResult = TRUE))
(colSums(kt1, sparseResult = TRUE)) # dsparse, with NA
(colSums(lt1, sparseResult = TRUE)) # isparse, with NA
(colSums(lt1, sparseResult = TRUE, na.rm = TRUE))
(colSums(nt1, sparseResult = TRUE)) # isparse, no NA
## check correct sparseness of both:
for(M in list(kt1, nt1, ng1, dg1, lt1, nt1)) {
    m <- as(M, "matrix")
    for(na.rm in c(FALSE,TRUE)) {
	cs  <- colSums(M, na.rm = na.rm)
	cs. <- colSums(M, na.rm = na.rm, sparseResult = TRUE)
	rs  <- rowSums(M, na.rm = na.rm)
	rs. <- rowSums(M, na.rm = na.rm, sparseResult = TRUE)
	stopifnot(isValid(cs., "sparseVector"), identical(cs, as(cs., "vector")),
                  isValid(rs., "sparseVector"), identical(rs, as(rs., "vector")),
		  {eq <- cs == colSums(m, na.rm = na.rm) ; ineq <- is.na(eq)
		   all(ineq | eq) && identical(ineq, is.na(cs)) },
		  {eq <- rs == rowSums(m, na.rm = na.rm) ; ineq <- is.na(eq)
		   all(ineq | eq) && identical(ineq, is.na(rs)) } )
    }
}

i1 <- cs. == 1
cs2 <- cs.
cs2[i1] <- 0 # failed in *-31 !!
## now *index* with a NA-sparseVector :
i2 <- i1 ; i2[3] <- NA ; li2 <- as.logical(i2)
cs3 <- cs. ;	       cs3 [i2] <- 0
v3 <- as(cs.,"vector"); v3[li2] <- 0
cs4 <- cs.	     ; cs4[li2] <- 0
stopifnot(length(i1@x) == 2, identical(li2, as(i2,"vector")),
	  identical(cs3, cs4),
	  cs3 == v3, all(as(v3, "sparseVector") == cs3)
	  ## indexing simple "numeric" with sparseVector:
	  ## see 'R_FIXME' in ../R/sparseVector.R
	  ## , identical(v3[i2], v3[li2])
	  ## TODO:
	  ## sub-assigning into simple "numeric" with sparseVector index:
	  )



M <- Matrix(c(2:0,1),2); M. <- as(M, "sparseMatrix")
(N <- as(crossprod(kronecker(diag(2), M)) > 0,
         "nMatrix"))
(L. <- as(N,"lMatrix"))
stopifnot(identical(N, as(L.,"nMatrix")),
	  identical(kronecker(	  c(1,0), M),
		    kronecker(cbind(1:0), M)))
assert.EQ.mat(kronecker(M,	      c(1,0,0)),
	      kronecker(as.matrix(M), c(1,0,0)))

## coercion from "dpo" or "dsy"
xx <- as(xpx, "dsyMatrix")
stopifnot(isSymmetric(xxS  <- as(xx,  "sparseMatrix")),
          isSymmetric(xpxS <- as(xpx, "sparseMatrix")))

tm <- matrix(0, 8,8)
tm[cbind(c(1,1,2,7,8),
         c(3,6,4,8,8))] <- c(2,-30,15,20,80)
(tM <- Matrix(tm))                ## dtC
(mM <- Matrix(m <- (tm + t(tm)))) ## dsC
mT <- as(mM, "dsTMatrix")
gC <- as(as(mT, "dgTMatrix"), "dgCMatrix")
lT <- as(Matrix(TRUE, 2,2),"TsparseMatrix")
## Check that mT, lT, and gC print properly :
pr.mT <- capture.output(mT)
pr.lT <- capture.output(lT)[-(1:2)]
nn <- unlist(strsplit(gsub(" +\\.", "", sub("^....", "", pr.mT[-(1:2)])), " "))
stopifnot(as.numeric(nn[nn != ""]) == m[m != 0],
	  identical(1:2, grep("|", pr.lT, fixed=TRUE)),
	  identical(pr.lT, capture.output(as(lT, "nMatrix"))[-(1:2)]),
          capture.output(gC)[-1] == pr.mT[-1])
assert.EQ.mat(tM, tm, tol=0)
assert.EQ.mat(gC, m,  tol=0)
assert.EQ.mat(mT, m,  tol=0)
stopifnot(isValid(mM, "dsCMatrix"), isValid(tM, "dtCMatrix")
	  , identical(mT, as(mM, "TsparseMatrix"))
	  , identical(gC, as(mM, "generalMatrix"))
	  ## coercions	general <-> symmetric
	  , identical(as(as(mM, "generalMatrix"), "symmetricMatrix"), mM)
	  , identical(as(as(mM, "dgTMatrix"),     "symmetricMatrix"), mT)
	  , identical(as(as(tM, "generalMatrix"),"triangularMatrix"), tM)
          , identical(tM + Diagonal(8), tMD <- Diagonal(8) + tM)
          , isValid(tMD, "dtCMatrix")
	  )
eM <- eigen(mM) # works thanks to base::as.matrix hack in ../R/zzz.R
stopifnot(all.equal(eM$values,
                { v <- c(162.462112512353, 30.0665927567458)
                  c(v, 15, 0, 0, 160-v[1], -15, -v[2])}, tol=1e-14))

##--- symmetric -> pos.def. needs valid test:
m5 <- Matrix(diag(5) - 1)
assertError(as(m5, "dpoMatrix"))# not pos.definite!
pm5 <- as(m5, "dspMatrix") # packed
assertError(as(pm5, "dppMatrix"))# not pos.definite!
sm <- as(Matrix(diag(5) + 1),"dspMatrix")
pm <- as(sm,"dpoMatrix")## gave infinite recursion (for a day or so)
pp <- as(pm,"dppMatrix")

###-- dense nonzero pattern:
class(m <- Matrix(TRUE,2,2)) # lsy
(n <- as(m, "nMatrix")) # nsy
validObject(n)

## 1)
as(n,"CsparseMatrix") # used to give CHOLMOD error: invalid xtype...
ls2 <- as(m, "CsparseMatrix") # works fine
## and really  'm' and 'n' are interally slot identical (!!!)

as(n,"sparseMatrix")
as(m,"sparseMatrix")

### -- now when starting with nsparse :
nT <- new("ngTMatrix",
          i = as.integer(c(0, 1, 0)),
          j = as.integer(c(0, 0, 1)), Dim = as.integer(c(2,2)),
          Dimnames = list(NULL, NULL))
(nC <- as(nT, "ngCMatrix"))
str(nC)# of course, no 'x' slot

tt <- as(nT,"denseMatrix") # nge (was lge "wrongly")
stopifnot(is(tt,"ngeMatrix"),
	  identical(as(tt, "lMatrix"),
		    as(as(nT, "lMatrix"), "denseMatrix")))
tt
as(nC,"denseMatrix")


###-- sparse nonzero pattern : ----------

(nkt <- as(as(as(kt1, "generalMatrix"), "CsparseMatrix"), "ngCMatrix"))# ok
dkt <- as(nkt, "denseMatrix")
(clt <- crossprod(nkt))
stopifnot(isValid(nkt, "ngCMatrix"),
          isValid(clt, "nsCMatrix"))
suppressWarnings(crossprod(clt)) ## warning "crossprod() of symmetric ..."

## a Csparse with *repeated* entry is not valid!
assertError(new("ngCMatrix", p = c(0L,2L), i = c(0L,0L), Dim = 2:1))


### "d" <-> "l"  for (symmetric) sparse : ---------------------------------------
suppressWarnings( data(KNex) ) ## may warn, as 'Matrix' is recommended
                               ## and exist more than once at check-time
mm <- KNex$mm
xpx <- crossprod(mm)
## extract nonzero pattern
nxpx <- as(xpx, "nsCMatrix")
show(nxpx) ## now ok, since subsetting works
r <- nxpx[1:2,]
lmm <- as(mm, "lgCMatrix")
nmm <- as(lmm, "nMatrix")
xlx <- crossprod(lmm)
x.x <- crossprod(nmm)
## now A = lxpx and B = xlx should be close, but not quite the same
## since <x,y> = 0 is well possible when x!=0 and y!=0 .
## However,  A[i,j] != 0 ==> B[i,j] != 0:
A <- as(as(nxpx, "lMatrix"), "TsparseMatrix")
B <- as(as(xlx,  "lMatrix"), "TsparseMatrix")
ij <- function(a) a@i + ncol(a) * a@j
stopifnot(all(ij(A) %in% ij(B)))

l3 <- upper.tri(matrix(,3,3))
stopifnot(isValid(c3 <- as(l3, "CsparseMatrix"), "CsparseMatrix"),# lgC
          is(c3, "lMatrix"))
(M <- Matrix(l3))
stopifnot(isValid(M, "ltCMatrix"),
          isValid(M2 <- M %x% M, "triangularMatrix"), # is "dtT" (why not "dtC" ?)
          dim(M2) == c(9,9), identical(M2, kronecker(M,M)))
M3 <- M %x% M2 #ok
(cM3 <- colSums(M3, sparse=TRUE))
identical(as.vector(cM3),
          as(rev(rowSums(M3, sparse=TRUE)), "vector"))
M. <- M2 %x% M # gave infinite recursion

## diagonal, sparse & interactions
stopifnot(isValid(as(Diagonal(3), "TsparseMatrix"), "TsparseMatrix"),
          isValid(X <- Diagonal(7) + 1.5 * tM[1:7,1:7], "sparseMatrix"),
          isValid(X, "triangularMatrix"),
          isValid(XX <- X - chol(crossprod(X)), "triangularMatrix"))
X
XX
XX <- as(drop0(XX), "dsCMatrix")
stopifnot(identical(XX, Matrix(0, nrow(X), ncol(X))))

M <- Matrix(m., sparse = FALSE)
(sM <- Matrix(m.))
class(dlM <- M >= 1)
stopifnot(identical(dlM, !(M < 1)),
	  isValid(sM, "sparseMatrix"),
	  isValid(dlM, "denseMatrix"))
(lM  <- as(dlM, "sparseMatrix"))
lM2 <- as(dlM, "CsparseMatrix") #-> now ok
lM0 <- Matrix:::as_Csparse(dlM)
stopifnot(identical3(lM, lM2, lM0))

selectMethod("coerce",	c("lgeMatrix", "CsparseMatrix"),
	     useInherited = c(from = TRUE, to = FALSE))

ms0 <- Matrix(c(0,1,1,0), 2,2)
ms <- as(ms0, "TsparseMatrix")
cs <- as(ms, "CsparseMatrix")
ll <- as(ms, "lMatrix")
lt <- as(ll, "lgTMatrix")
nn <- as(cs, "nsparseMatrix")
l2 <- as(cs, "lsparseMatrix")
nt <- triu(nn)
n3 <- as(nt, "lsparseMatrix")
da <- nt + t(nt)
dm <- nt * t(nt) + da
stopifnot(isValid(ms, "dsTMatrix"),
          as(ms0,"matrix") == as(ll, "matrix"), # coercing num |-> log
	  as(lt, "matrix") == as(ll, "matrix"),
	  identical(ms, as(ll, "dMatrix")),
	  identical4(as(ll, "CsparseMatrix"), as(cs, "lMatrix"),# lsC*
		     as(nn, "lsparseMatrix"), l2),
	  identical3(da, dm, as(cs, "generalMatrix")),		# dgC*
	  identical(as(da, "lMatrix"), as(lt, "CsparseMatrix")) # lgC*
	  )
## Dense *packed* ones:
s4 <- as(D4, "symmetricMatrix")
sp <- as(as(as(D4, "symmetricMatrix"),"denseMatrix"),"dspMatrix")
tp <- as(triu(sp),"dtpMatrix")
tpL <- as(tril(sp),"dtpMatrix")
(spL <- t(sp))
stopifnot(sp @uplo=="U", tp @uplo=="U",
	  spL@uplo=="L", tpL@uplo=="L")

## band():
n <- 4 ; m <- 6
r1 <- Matrix(1:24, n,m)
validObject(M1 <- band(r1, 0,0))
(M1 <- as(M1, "sparseMatrix"))
r2 <- Matrix(1:18, 3, 6)
stopifnot(identical(M1, bandSparse(n,m, k=0, diag = list(diag(r1)))),
	  identical(band(r2, 0,4),
		    band(r2, 0,3) + band(r2, 4,4)))
s1 <- as(r1, "sparseMatrix") # such that band(s1) is sparse, too
for(k1 in (-n):m)
    for(k2 in k1:m) {
        isValid(br1 <- band(r1, k1,k2), "ddenseMatrix")
        isValid(bs1 <- band(s1, k1,k2), "CsparseMatrix")
        stopifnot(all(r1 == s1))
    }

D. <- Diagonal(x= c(-2,3:4)); D.[lower.tri(D.)] <- 1:3 ; D.
D0 <- Diagonal(x= 0:3);       D0[upper.tri(D0)] <- 1:6 ; D0
stopifnot(all.equal(list(modulus = structure(24, logarithm = FALSE), sign = -1L),
                    unclass(determinant(D.,FALSE)), tol=1e-15),
          all.equal(list(modulus = structure(0, logarithm = FALSE), sign = 1L),
                    unclass(determinant(D0,FALSE)), tol=0)
          )

### More sparseVector checks: -------------------------------
validObject(new("isparseVector"))
R <- sv <- as(D4, "sparseVector")
## dim(<sparseVector>) <- (n1,n2)  --> sparse Matrix :
dim(R) <- dim(D4)
stopifnot(isValid(sv,"sparseVector"),
	  isValid(R, "sparseMatrix"),
	  identical(D4, as(R, "diagonalMatrix")))
iv <- c(rep(0, 5), 3, 0,0,7,0,0,0)
sv <- as(iv, "sparseVector")
sv. <- as(as.integer(iv), "sparseVector")
## Note: Method with signature "numeric#sparseVector" chosen ...
(sv2 <- as(sv, "isparseVector")) ## gave error
as(sv, "zsparseVector")
stopifnot(identical(sv., sv2),
	  identical(  Matrix(sv, 3,4, byrow=TRUE),
		    t(Matrix(sv, 4,3))))


## "Large" sparse:
n <- 100000
m <-  50000 ; nnz <- 47
M <- spMatrix(n, m,
              i = sample(n, nnz, replace = TRUE),
              j = sample(m, nnz, replace = TRUE),
              x = round(rnorm(nnz),1))
validObject(Mv <- as(M, "sparseVector"))
validObject(Dv <- as(Diagonal(60000), "sparseVector"))
Dm <- Dv; dim(Dm) <- c(180000L, 20000L)
stopifnot(isValid(Md <- M * rowSums(M, sparseResult=TRUE), "sparseMatrix"),
          isValid(Dm, "sparseMatrix"),
	  identical(Dv, as(Dm, "sparseVector")))

p. <- new("dtCMatrix", i = c(2:3, 2L), p = c(0L, 2:3, 3L, 3L),
          Dim = c(4L, 4L), x = rep(-0.5, 3), uplo = "L", diag = "U")
assert.EQ.mat(solve(solve(p.)), as(p., "matrix"))
dimnames(p.)[[1]] <- paste(1:4)
ii <- is.na(p.)
stopifnot(all(!ii), !any(as(ii, "denseMatrix")))# used to fail

lst <- ls()
table(istri <- sapply(lst, function(.) is(get(.),"triangularMatrix")))
table(triC <- sapply(lst[istri], function(.) class(get(.))))
table(uniC <- sapply(lst[istri], function(.) get(.)@diag == "U"))
lsUtr <- lst[istri][uniC]
(di <- sapply(lsUtr, function(.) dim(get(.))))
## TODO: use %*%, crossprod(), .. on all those  4 x 4 -- and check "triangular rules"

cat('Time elapsed: ', (.pt <- proc.time()),'\n') # "stats"
##
cat("checkMatrix() of all: \n---------\n")
Sys.setlocale("LC_COLLATE", "C")# to keep ls() reproducible
for(nm in ls()) if(is(.m <- get(nm), "Matrix")) {
    cat("\n", rep("-",nchar(nm)),"\n",nm, ":\n", sep='')
    checkMatrix(.m)
}
cat('Time elapsed: ', proc.time() - .pt,'\n') # "stats"

if(!interactive()) warnings()