1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
|
#### Matrix Factorizations --- of all kinds
library(Matrix)
source(system.file("test-tools.R", package = "Matrix"))# identical3() etc
### "sparseQR" : Check consistency of methods
## --------
data(KNex); mm <- KNex$mm; y <- KNex$y
stopifnot(is((Y <- Matrix(y)), "dgeMatrix"))
md <- as(mm, "matrix") # dense
system.time(mmq <- qr(mm))
system.time(mdq <- qr(md))# much (~ 150 x) slower
## qr.qy and qr.qty should be inverses
stopifnot(all.equal(qr.qy (mmq, qr.qty(mmq, y))@x, y),
all.equal(qr.qty(mmq, qr.qy (mmq, y))@x, y),
all.equal(qr.qty(mmq, y), qr.qty(mmq, Y)) )
## consistency of results dense and sparse
stopifnot(is.all.equal3(qr.coef (mdq, y), qr.coef (mmq,y)@x, qr.coef (mmq,Y)@x) ,
is.all.equal3(qr.resid (mdq, y), qr.resid (mmq,y)@x, qr.resid (mmq,Y)@x) ,
is.all.equal3(qr.fitted(mdq, y), qr.fitted(mmq,y)@x, qr.fitted(mmq,Y)@x) )
### "denseLU"
## Testing expansions of factorizations {was ./expand.R, then in simple.R }
set.seed(1)
(m1 <- round(Matrix(rnorm(25), 5), 2))
str(lu1 <- lu(m1))
(luX <- expand(lu1))
stopifnot(all.equal(as(m1, "matrix"),
as(luX$P %*% (luX$L %*% luX$U), "matrix")))
### "sparseLU"
por1 <- readMM(system.file("external/pores_1.mtx", package = "Matrix"))
lu1 <- lu(por1)
pm <- as(por1, "CsparseMatrix")
(pmLU <- lu(pm)) # -> show(<MatrixFactorization>)
xp <- expand(pmLU)
## permute rows and columns of original matrix
ppm <- pm[pmLU@p + 1:1, pmLU@q + 1:1]
Ppm <- pmLU@L %*% pmLU@U
## identical only as long as we don't keep the original class info:
stopifnot(identical(lu1, pmLU),
identical(ppm, with(xp, P %*% pm %*% t(Q))),
sapply(xp, is, class="Matrix"))
## these two should be the same, and `are' in some ways:
assert.EQ.mat(ppm, as(Ppm, "matrix"), tol = 1e-14)
## *however*
length(ppm@x)# 180
length(Ppm@x)# 317 !
table(Ppm@x == 0)# (194, 123) - has 123 "zero" and 14 ``almost zero" entries
##-- determinant() and det() --- working via LU ---
m <- matrix(c(0, NA, 0, NA, NA, 0, 0, 0, 1), 3,3)
m0 <- rbind(0,cbind(0,m))
M <- as(m,"Matrix"); M ## "dsCMatrix" ...
M0 <- rBind(0, cBind(0, M))
dM <- as(M, "denseMatrix")
dM0 <- as(M0,"denseMatrix")
if(FALSE) # FIXME "near-singular A"
lum <- lu(M)
if(FALSE) # FIXME "near-singular A"
lum0 <- lu(M0)
stopifnot(is.na(det(M)), is.na(det(dM)),
TRUE ## FIXME !! det(M0) == 0, det(dM0) == 0
)
###________ Cholesky() ________
##-------- LDL' ---- small exact examples
set.seed(1)
for(n in c(5:12)) {
cat("\nn = ",n,"\n-------\n")
rr <- mkLDL(n)
## -------- from 'test-tools.R'
stopifnot(all(with(rr, A == as(L %*% D %*% t(L),
"symmetricMatrix"))))
d <- rr$d.half
A <- rr$A
R <- chol(A)
print(d. <- diag(R))
D. <- Diagonal(x= d.^2)
L. <- t(R) %*% Diagonal(x = 1/d.)
stopifnot(all.equal(as.matrix(D.), as.matrix(rr$ D)),
all.equal(as.matrix(L.), as.matrix(rr$ L)))
##
CAp <- Cholesky(A)# perm=TRUE --> Permutation:
p <- CAp@perm + 1L
P <- as(p, "pMatrix")
## the inverse permutation:
invP <- solve(P)@perm
lDet <- sum(2* log(d))# the "true" value
ldet <- Matrix:::.diag.dsC(Chx = CAp, res.kind = "sumLog")
##
CA <- Cholesky(A,perm=FALSE)
ldet2 <- Matrix:::.diag.dsC(Chx = CA, res.kind = "sumLog")
## not printing CAp : ends up non-integer for n >= 11
mCAp <- as(CAp,"sparseMatrix")
print(mCA <- drop0(as(CA, "sparseMatrix")))
stopifnot(identical(A[p,p], as(P %*% A %*% t(P),
"symmetricMatrix")),
all.equal(lDet, sum(log(Matrix:::.diag.dsC(Chx= CAp,res.kind="diag")))),
relErr(d.^2, Matrix:::.diag.dsC(Chx= CA, res.kind="diag")) < 1e-14,
all.equal(lDet, ldet),
all.equal(lDet, ldet2),
relErr(A[p,p], tcrossprod(mCAp)) < 1e-14)
}## for()
set.seed(17)
(rr <- mkLDL(4))
(CA <- Cholesky(rr$A))
stopifnot(all.equal(determinant(rr$A),
determinant(as(rr$A, "matrix"))))
A12 <- mkLDL(12, 1/10)
(r12 <- allCholesky(A12$A))
aCh.hash <- r12$r.all %*% (2^(2:0))
if(FALSE)## if(require("sfsmisc"))
split(rownames(r12$r.all), Duplicated(aCh.hash))
## TODO: find cases for both choices when we leave it to CHOLMOD to chose
for(n in 1:50) { ## used to seg.fault at n = 10 !
mkA <- mkLDL(1+rpois(1, 30), 1/10)
cat(sprintf("n = %3d, LDL-dim = %d x %d ", n, nrow(mkA$A), ncol(mkA$A)))
r <- allCholesky(mkA$A, silentTry=TRUE)
## Compare .. apart from the NAs that happen from (perm=FALSE, super=TRUE)
iNA <- apply(is.na(r$r.all), 1, any)
cat(sprintf(" -> %3s NAs\n", if(any(iNA)) format(sum(iNA)) else "no"))
stopifnot(aCh.hash[!iNA] == r$r.all[!iNA,] %*% (2^(2:0)))
## cat("--------\n")
}
## This is a relatively small "critical example" :
A. <-
new("dsCMatrix", Dim = c(25L, 25L), uplo = "U"
, i = as.integer(
c(0, 1, 2, 3, 4, 2, 5, 6, 0, 8, 8, 9, 3, 4, 10, 11, 6, 12, 13, 4,
10, 14, 15, 1, 2, 5, 16, 17, 0, 7, 8, 18, 9, 19, 10, 11, 16, 20,
0, 6, 7, 16, 17, 18, 20, 21, 6, 9, 12, 14, 19, 21, 22, 9, 11, 19,
20, 22, 23, 1, 16, 24))
##
, p = c(0:6, 8:10, 12L, 15:16, 18:19, 22:23, 27:28, 32L, 34L, 38L, 46L, 53L, 59L, 62L)
##
, x = c(1, 1, 1, 1, 2, 100, 2, 40, 1, 2, 100, 6700, 100, 100, 13200,
1, 50, 4100, 1, 5, 400, 20, 1, 40, 100, 5600, 9100, 5000, 5,
100, 100, 5900, 100, 6200, 30, 20, 9, 2800, 1, 100, 8, 10, 8000,
100, 600, 23900, 30, 100, 2800, 50, 5000, 3100, 15100, 100, 10,
5600, 800, 4500, 5500, 7, 600, 18200))
validObject(A.)
## A1: the same pattern as A. just simply filled with '1's :
A1 <- A.; A1@x[] <- 1; A1@factors <- list()
A1.8 <- A1; diag(A1.8) <- 8
##
nT. <- as(AT <- as(A., "TsparseMatrix"),"nMatrix")
stopifnot(all(nT.@i <= nT.@j),
identical(qr(A1.8), qr(as(A1.8, "dgCMatrix"))))
CA <- Cholesky(A.)
stopifnot(isValid(CAinv <- solve(CA), "dsCMatrix"))
MA <- as(CA, "Matrix") # with a confusing warning -- FIXME!
isValid(MAinv <- solve(MA), "dtCMatrix")
## comparing MAinv with some solve(CA, system="...") .. *not* trivial? - TODO
##
CAinv2 <- solve(CA, Diagonal(nrow(A.)))
CAinv2 <- as(CAinv2, "symmetricMatrix")
stopifnot(identical(CAinv, CAinv2))
## FINALLY fix this "TODO":
try( tc <- Cholesky(nT.) )
for(p in c(FALSE,TRUE))
for(L in c(FALSE,TRUE))
for(s in c(FALSE,TRUE, NA)) {
cat(sprintf("p,L,S = (%2d,%2d,%2d): ", p,L,s))
r <- tryCatch(Cholesky(A., perm=p, LDL=L, super=s),
error = function(e)e)
cat(if(inherits(r, "error")) " *** E ***" else
sprintf("%3d", r@type),"\n", sep="")
}
str(A., max=3) ## look at the 'factors'
facs <- A.@factors
names(facs) <- sub("Cholesky$", "", names(facs))
facs <- facs[order(names(facs))]
sapply(facs, class)
str(lapply(facs, slot, "type"))
## super = TRUE currently always entails LDL=FALSE :
## hence isLDL is TRUE for ("D" and not "S"):
sapply(facs, isLDL)
chkCholesky <- function(chmf, A) {
stopifnot(is(chmf, "CHMfactor"),
is(A, "Matrix"), isSymmetric(A))
if(!is(A, "dsCMatrix"))
A <- as(A, "dsCMatrix")
L <- drop0(zapsmall(L. <- as(chmf, "Matrix")))
cat("no. nonzeros in L {before / after drop0(zapsmall(.))}: ",
c(nnzero(L.), nnzero(L)), "\n") ## 112, 95
ecc <- expand(chmf)
A... <- with(ecc, crossprod(crossprod(L,P)))
stopifnot(all.equal(L., ecc$L, tol = 1e-14),
all.equal(A, A..., tol = 1e-14, factorsCheck = FALSE))
invisible(ecc)
}
c1.8 <- try(Cholesky(A1.8, super = TRUE))# works "always", interestingly ...
chkCholesky(c1.8, A1.8)
## --- now a "large" (712 x 712) real data example ---------------------------
data(KNex)
mtm <- with(KNex, crossprod(mm))
ld.3 <- .Call("dsCMatrix_LDL_D", mtm, perm=TRUE, "sumLog")
stopifnot(names(mtm@factors) == "sPDCholesky")
ld.4 <- .Call("dsCMatrix_LDL_D", mtm, perm=FALSE, "sumLog")# clearly slower
stopifnot(names(mtm@factors) == paste(c("sPD", "spD"),"Cholesky", sep=''))
c2 <- Cholesky(mtm, super = TRUE)
stopifnot(names(mtm@factors) == paste(c("sPD", "spD", "SPd"),
"Cholesky", sep=''))
r <- allCholesky(mtm)
r
## is now taken from cache
c1 <- Cholesky(mtm)
bv <- 1:nrow(mtm) # even integer
b <- matrix(bv)
## solve(c2, b) by default solves Ax = b, where A = c2'c2 !
x <- solve(c2,b)
stopifnot(identical3(x, solve(c2, bv), solve(c2, b, system = "A")),
all.equal(x, solve(mtm, b)))
for(sys in c("A", "LDLt", "LD", "DLt", "L", "Lt", "D", "P", "Pt")) {
x <- solve(c2, b, system = sys)
cat(sys,":\n"); print(head(x))
stopifnot(dim(x) == c(712, 1),
identical(x, solve(c2, bv, system = sys)))
}
## log(|LL'|) - check if super = TRUE and simplicial give same determinant
ld1 <- .Call("CHMfactor_ldetL2", c1)
ld2 <- .Call("CHMfactor_ldetL2", c2)
(ld1. <- determinant(mtm))
## experimental
ld3 <- .Call("dsCMatrix_LDL_D", mtm, TRUE, "sumLog")
ld4 <- .Call("dsCMatrix_LDL_D", mtm, FALSE, "sumLog")
stopifnot(all.equal(ld1, ld2),
is.all.equal3(ld2, ld3, ld4),
all.equal(ld.3, ld3, tol = 1e-14),
all.equal(ld.4, ld4, tol = 1e-14),
all.equal(ld1, as.vector(ld1.$modulus), tol = 1e-14))
## Some timing measurements
mtm <- with(KNex, crossprod(mm))
I <- .symDiagonal(n=nrow(mtm))
set.seed(101); r <- runif(100)
system.time(D1 <- sapply(r, function(rho) Matrix:::ldet1.dsC(mtm + (1/rho) * I)))
## 0.842 on fast cmath-5
system.time(D2 <- sapply(r, function(rho) Matrix:::ldet2.dsC(mtm + (1/rho) * I)))
## 0.819
system.time(D3 <- sapply(r, function(rho) Matrix:::ldet3.dsC(mtm + (1/rho) * I)))
## 0.810
stopifnot(is.all.equal3(D1,D2,D3, tol = 1e-13))
## Updating LL' should remain LL' and not become LDL' :
if(FALSE) {
data(Dyestuff, package = "lme4")
Zt <- as(Dyestuff$Batch, "sparseMatrix")
} else {
Zt <- new("dgCMatrix", Dim = c(6L, 30L), x = rep(1, 30),
i = rep(0:5, each=5),
p = 0:30, Dimnames = list(LETTERS[1:6], NULL))
}
Ut <- 0.78 * Zt
L <- Cholesky(tcrossprod(Ut), LDL = FALSE, Imult = 1)
L1 <- update(L, tcrossprod(Ut), mult = 1)
stopifnot(all.equal(L, L1))
## Schur() ----------------------
checkSchur <- function(A, SchurA = Schur(A), tol = 1e-14) {
stopifnot(is(SchurA, "Schur"),
isOrthogonal(Q <- SchurA@Q),
all.equal(as.mat(A),
as.mat(Q %*% SchurA@T %*% t(Q)), tol = tol))
}
SH <- Schur(H5 <- Hilbert(5))
checkSchur(H5, SH)
checkSchur(Diagonal(x = 9:3))
p <- 4L
uTp <- new("dtpMatrix", x=c(2, 3, -1, 4:6, -2:1), Dim = c(p,p))
(uT <- as(uTp, "dtrMatrix"))
## Schur ( <general> ) <--> Schur( <triangular> )
Su <- Schur(uT) ; checkSchur(uT, Su)
gT <- as(uT,"generalMatrix")
Sg <- Schur(gT) ; checkSchur(gT, Sg)
Stg <- Schur(t(gT));checkSchur(t(gT), Stg)
Stu <- Schur(t(uT));checkSchur(t(uT), Stu)
stopifnot(identical3(Sg@T, uT, Su@T),
identical(Sg@Q, as(diag(p), "dgeMatrix")),
identical(Stg@T, as(t(gT[,p:1])[,p:1], "triangularMatrix")),
identical(Stg@Q, as(diag(p)[,p:1], "dgeMatrix")),
identical(Stu@T, Stg@T))
assert.EQ.mat(Stu@Q, as(Stg@Q,"matrix"), tol=0)
## the pedigreemm example where solve(.) failed:
p <- new("dtCMatrix", i = c(2L, 3L, 2L, 5L, 4L, 4:5), p = c(0L, 2L, 4:7, 7L),
Dim = c(6L, 6L), Dimnames = list(as.character(1:6), NULL),
x = rep.int(-0.5, 7), uplo = "L", diag = "U")
ip <- solve(p)
assert.EQ.mat(solve(ip), as(p,"matrix"))
## chol2inv() for a traditional matrix
assert.EQ.mat( crossprod(chol2inv(chol(Diagonal(x = 5:1)))),
C <- crossprod(chol2inv(chol( diag(x = 5:1)))))
stopifnot(all.equal(C, diag((5:1)^-2)))
## failed in some versions because of a "wrong" implicit generic
|