1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
|
### Testing the group methods --- some also happens in ./Class+Meth.R
library(Matrix)
source(system.file("test-tools.R", package = "Matrix"))# identical3() etc
set.seed(2001)
mm <- Matrix(rnorm(50 * 7), nc = 7)
xpx <- crossprod(mm)# -> "factors" in mm !
round(xpx, 3) # works via "Math2"
y <- rnorm(nrow(mm))
xpy <- crossprod(mm, y)
res <- solve(xpx, xpy)
signif(res, 4) # 7 x 1 Matrix
stopifnot(all(signif(res) == signif(res, 6)),
all(round (xpx) == round (xpx, 0)))
## exp(): component wise
signif(dd <- (expm(xpx) - exp(xpx)) / 1e34, 3)# 7 x 7
stopifnot(validObject(xpx),
validObject(xpy),
validObject(dd))
## "Math" also, for log() and [l]gamma() which need special treatment
stopifnot(identical(exp(res)@x, exp(res@x)),
identical(log(abs(res))@x, log(abs((res@x)))),
identical(lgamma(res)@x, lgamma(res@x)))
###--- sparse matrices ---------
m <- Matrix(c(0,0,2:0), 3,5)
(mC <- as(m, "dgCMatrix"))
sm <- sin(mC)
stopifnot(class(sm) == class(mC), class(mC) == class(mC^2),
dim(sm) == dim(mC),
class(0 + 100*mC) == class(mC),
all.equal(0.1 * ((0 + 100*mC)/10), mC),
all.equal(sqrt(mC ^ 2), mC),
all.equal(m^m, mC^mC),
identical(mC^2, mC * mC),
identical(mC*2, mC + mC)
)
x <- Matrix(rbind(0,cbind(0, 0:3,0,0,-1:2,0),0))
x # sparse
(x2 <- x + 10*t(x))
stopifnot(is(x2, "sparseMatrix"),
identical(x2, t(x*10 + t(x))),
identical(x, as((x + 10) - 10, class(x))))
(px <- Matrix(x^x - 1))#-> sparse again
stopifnot(px@i == c(3,4,1,4),
px@x == c(3,26,-2,3))
###----- Compare methods ---> logical Matrices ------------
l3 <- upper.tri(matrix(, 3, 3))
(ll3 <- Matrix(l3))
dt3 <- (99* Diagonal(3) + (10 * ll3 + Diagonal(3)))/10
(dsc <- crossprod(ll3))
stopifnot(validObject(ll3), validObject(dsc),
identical(ll3, t(t(ll3))),
identical(dsc, t(t(dsc))),
isValid(dsc + 3 * Diagonal(nrow(dsc)), "dsCMatrix"),
isValid(dt3, "triangularMatrix"), # remained triangular
isValid(dt3 > 0, "triangularMatrix")# ditto
)
(lm1 <- dsc >= 1) # now ok
(lm2 <- dsc == 1) # now ok
nm1 <- as(lm1, "nMatrix")
(nm2 <- as(lm2, "nMatrix"))
stopifnot(validObject(lm1), validObject(lm2),
validObject(nm1), validObject(nm2),
identical(dsc, as(dsc * as(lm1, "dMatrix"), "dsCMatrix")))
crossprod(lm1) # lm1: "lsC*"
cnm1 <- crossprod(nm1)
stopifnot(is(cnm1, "symmetricMatrix"), ## whereas the %*% is not:
Q.eq(cnm1, nm1 %*% nm1))
dn1 <- as(nm1, "denseMatrix")
stopifnot(all(dn1 == nm1))
dsc[2,3] <- NA ## now has an NA (and no longer is symmetric)
## ----- and "everything" is different
## also add "non-structural 0":
dsc@x[1] <- 0
dsc
dsc/ 5
dsc + dsc
dsc - dsc
dsc + 1 # -> no longer sparse
Tsc <- as(dsc, "TsparseMatrix")
dsc. <- drop0(dsc)
stopifnot(identical(dsc., Matrix((dsc + 1) -1)),
identical(dsc., Matrix((Tsc + 1) -1)), # ok (exact arithmetic)
Q.eq(0 != dsc, dsc != Matrix(0, 3, 3)),
Q.eq(0 != dsc, dsc != c(0,0)) # with a warning ("not multiple ..")
)
str(lm1 <- dsc >= 1) # now ok (NA in proper place, however:
lm1 ## NA used to print as ' ' , now 'N'
(lm2 <- dsc == 1)# ditto
ddsc <- kronecker(Diagonal(7), dsc)
isValid(ddv <- rowSums(ddsc, sparse=TRUE), "sparseVector")
sv <- colSums(kC <- kronecker(mC,kronecker(mC,mC)), sparse=TRUE)
EQ <- ddv == rowSums(ddsc)
na.ddv <- is.na(ddv)
sM <- Matrix(pmax(0, round(rnorm(50*15, -1.5), 2)), 50,15)
stopifnot(sv == colSums(kC), is.na(as.vector(ddv)) == na.ddv,
isValid(sM/(-7:7), "CsparseMatrix"),
all(EQ | na.ddv))
## Just for print "show":
z <- round(rnorm(77), 2)
z[sample(77,10)] <- NA
(D <- Matrix(z, 7)) # dense
z[sample(77,15)] <- 0
(D <- Matrix(z, 7)) # sparse
abs(D) >= 0.5 # logical sparse
stopifnot(identical(crossprod(lm1),# "lgC": here works!
crossprod(as(lm1, "dMatrix"))
))
## Systematically look at all "Ops" group generics for "all" Matrix classes
## -------------- Main issue: Detect infinite recursion problems
cl <- sapply(ls(), function(.) class(get(.)))
Mcl <- c(grep("Matrix$", cl, value=TRUE),
grep("sparseVector", cl, value=TRUE))
table(Mcl)
M.objs <- names(Mcl[!duplicated(Mcl)])
cat("Checking all group generics for a set of arguments:\n",
"---------------------------------------------------\n", sep='')
for(gr in getGroupMembers("Ops")) {
cat(gr,"\n",paste(rep.int("=",nchar(gr)),collapse=""),"\n", sep='')
for(f in getGroupMembers(gr)) {
cat(sprintf("%9s : ", dQuote(f)))
for(nm in M.objs) {
M <- get(nm, inherits=FALSE)
nm <- NROW(M)
cat("o")
for(x in list(TRUE, -3.2, 0L, seq_len(nm))) {
cat(".")
validObject(r1 <- do.call(f, list(M,x)))
validObject(r2 <- do.call(f, list(x,M)))
stopifnot(dim(r1) == dim(M), dim(r2) == dim(M))
}
## M o <sparseVector>
x <- numeric(nm)
x[c(1,length(x))] <- 1:2
sv <- as(x, "sparseVector")
cat("s.")
validObject(r3 <- do.call(f, list(M, sv)))
stopifnot(dim(r3) == dim(M))
}
cat("\n")
}
}
if(FALSE) {## These are not yet there
lm1 & lm2
lm1 | lm2
}
cat('Time elapsed: ', proc.time(),'\n') # for ``statistical reasons''
|