File: group-methods.R

package info (click to toggle)
rmatrix 0.999375-43-1
  • links: PTS
  • area: main
  • in suites: squeeze
  • size: 8,068 kB
  • ctags: 2,395
  • sloc: ansic: 37,941; makefile: 216; sh: 128
file content (172 lines) | stat: -rw-r--r-- 5,323 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
### Testing the group methods  --- some also happens in ./Class+Meth.R

library(Matrix)
source(system.file("test-tools.R", package = "Matrix"))# identical3() etc

set.seed(2001)

mm <- Matrix(rnorm(50 * 7), nc = 7)
xpx <- crossprod(mm)# -> "factors" in mm !
round(xpx, 3) # works via "Math2"

y <- rnorm(nrow(mm))
xpy <- crossprod(mm, y)
res <- solve(xpx, xpy)
signif(res, 4) # 7 x 1 Matrix

stopifnot(all(signif(res) == signif(res, 6)),
	  all(round (xpx) == round (xpx, 0)))

## exp(): component wise
signif(dd <- (expm(xpx) - exp(xpx)) / 1e34, 3)# 7 x 7

stopifnot(validObject(xpx),
          validObject(xpy),
          validObject(dd))

## "Math" also, for log() and [l]gamma() which need special treatment
stopifnot(identical(exp(res)@x, exp(res@x)),
          identical(log(abs(res))@x, log(abs((res@x)))),
          identical(lgamma(res)@x, lgamma(res@x)))


###--- sparse matrices ---------

m <- Matrix(c(0,0,2:0), 3,5)
(mC <- as(m, "dgCMatrix"))
sm <- sin(mC)
stopifnot(class(sm) == class(mC), class(mC) == class(mC^2),
          dim(sm) == dim(mC),
          class(0 + 100*mC) == class(mC),
          all.equal(0.1 * ((0 + 100*mC)/10), mC),
          all.equal(sqrt(mC ^ 2), mC),
          all.equal(m^m, mC^mC),
          identical(mC^2, mC * mC),
          identical(mC*2, mC + mC)
          )

x <- Matrix(rbind(0,cbind(0, 0:3,0,0,-1:2,0),0))
x # sparse
(x2 <- x + 10*t(x))
stopifnot(is(x2, "sparseMatrix"),
          identical(x2, t(x*10 + t(x))),
	  identical(x, as((x + 10) - 10, class(x))))

(px <- Matrix(x^x - 1))#-> sparse again
stopifnot(px@i == c(3,4,1,4),
          px@x == c(3,26,-2,3))

###----- Compare methods ---> logical Matrices ------------
l3 <- upper.tri(matrix(, 3, 3))
(ll3 <- Matrix(l3))
dt3 <- (99* Diagonal(3) + (10 * ll3 + Diagonal(3)))/10
(dsc <- crossprod(ll3))
stopifnot(validObject(ll3), validObject(dsc),
          identical(ll3, t(t(ll3))),
          identical(dsc, t(t(dsc))),
          isValid(dsc + 3 * Diagonal(nrow(dsc)), "dsCMatrix"),
          isValid(dt3, "triangularMatrix"),   # remained triangular
          isValid(dt3 > 0, "triangularMatrix")# ditto
          )

(lm1 <- dsc >= 1) # now ok
(lm2 <- dsc == 1) # now ok
nm1 <- as(lm1, "nMatrix")
(nm2 <- as(lm2, "nMatrix"))

stopifnot(validObject(lm1), validObject(lm2),
          validObject(nm1), validObject(nm2),
          identical(dsc, as(dsc * as(lm1, "dMatrix"), "dsCMatrix")))

crossprod(lm1) # lm1: "lsC*"
cnm1 <- crossprod(nm1)
stopifnot(is(cnm1, "symmetricMatrix"), ## whereas the %*% is not:
	  Q.eq(cnm1, nm1 %*% nm1))
dn1 <- as(nm1, "denseMatrix")
stopifnot(all(dn1 == nm1))

dsc[2,3] <- NA ## now has an NA (and no longer is symmetric)
##          ----- and "everything" is different
## also add "non-structural 0":
dsc@x[1] <- 0
dsc
dsc/ 5
dsc + dsc
dsc - dsc
dsc + 1 # -> no longer sparse
Tsc <- as(dsc, "TsparseMatrix")
dsc. <- drop0(dsc)
stopifnot(identical(dsc., Matrix((dsc + 1) -1)),
          identical(dsc., Matrix((Tsc + 1) -1)), # ok (exact arithmetic)
	  Q.eq(0 != dsc, dsc != Matrix(0, 3, 3)),
	  Q.eq(0 != dsc, dsc != c(0,0)) # with a warning ("not multiple ..")
          )
str(lm1 <- dsc >= 1) # now ok (NA in proper place, however:
lm1 ## NA used to print as ' ' , now 'N'
(lm2 <- dsc == 1)# ditto

ddsc <- kronecker(Diagonal(7), dsc)
isValid(ddv <- rowSums(ddsc, sparse=TRUE), "sparseVector")
sv <- colSums(kC <- kronecker(mC,kronecker(mC,mC)), sparse=TRUE)
EQ <- ddv == rowSums(ddsc)
na.ddv <- is.na(ddv)
sM <- Matrix(pmax(0, round(rnorm(50*15, -1.5), 2)), 50,15)
stopifnot(sv == colSums(kC), is.na(as.vector(ddv)) == na.ddv,
          isValid(sM/(-7:7), "CsparseMatrix"),
	  all(EQ | na.ddv))

## Just for print "show":
z <- round(rnorm(77), 2)
z[sample(77,10)] <- NA
(D <- Matrix(z, 7)) # dense
z[sample(77,15)] <- 0
(D <- Matrix(z, 7)) # sparse
abs(D) >= 0.5       # logical sparse

stopifnot(identical(crossprod(lm1),# "lgC": here works!
                    crossprod(as(lm1, "dMatrix"))
                    ))

## Systematically look at all "Ops" group generics for "all" Matrix classes
## -------------- Main issue: Detect infinite recursion problems
cl <- sapply(ls(), function(.) class(get(.)))
Mcl <- c(grep("Matrix$", cl, value=TRUE),
         grep("sparseVector", cl, value=TRUE))
table(Mcl)
M.objs <- names(Mcl[!duplicated(Mcl)])

cat("Checking all group generics for a set of arguments:\n",
    "---------------------------------------------------\n", sep='')
for(gr in getGroupMembers("Ops")) {
    cat(gr,"\n",paste(rep.int("=",nchar(gr)),collapse=""),"\n", sep='')
    for(f in getGroupMembers(gr)) {
	cat(sprintf("%9s : ", dQuote(f)))
	for(nm in M.objs) {
	    M <- get(nm, inherits=FALSE)
            nm <- NROW(M)
	    cat("o")
	    for(x in list(TRUE, -3.2, 0L, seq_len(nm))) {
                cat(".")
		validObject(r1 <- do.call(f, list(M,x)))
		validObject(r2 <- do.call(f, list(x,M)))
		stopifnot(dim(r1) == dim(M), dim(r2) == dim(M))
	    }
            ## M  o  <sparseVector>
            x <- numeric(nm)
            x[c(1,length(x))] <- 1:2
            sv <- as(x, "sparseVector")
            cat("s.")
            validObject(r3 <- do.call(f, list(M, sv)))
            stopifnot(dim(r3) == dim(M))
	}
	cat("\n")
    }
}

if(FALSE) {## These are not yet there
lm1 & lm2
lm1 | lm2
}


cat('Time elapsed: ', proc.time(),'\n') # for ``statistical reasons''