1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
|
library(Matrix)
## This is example(sp....) -- much extended
mEQ <- function(x,y, ...) {
## first drop columns from y which are all 0 :
if(any(i0 <- colSums(abs(x)) == 0)) {
message(gettextf("x had %d zero-columns", sum(i0)))
x <- x[, !i0, drop=FALSE]
}
if(any(i0 <- colSums(abs(y)) == 0)) {
message(gettextf("y had %d zero-columns", sum(i0)))
y <- y[, !i0, drop=FALSE]
}
isTRUE(all.equal(x,y, tol=0, ...))
}
##' Is sparse.model.matrix() giving the "same" as dense model.matrix() ?
##'
##' @return logical
##' @param frml formula
##' @param dat data frame
##' @param showFactors
##' @param ...
isEQsparseDense <- function(frml, dat,
showFactors = isTRUE(getOption("verboseSparse")), ...)
{
## Author: Martin Maechler, Date: 21 Jul 2009
stopifnot(inherits(frml, "formula"), is.data.frame(dat))
if(showFactors)
print(attr(terms(frml, data=dat), "factors"))
smm <- sparse.model.matrix(frml, dat, ...)
mm <- model.matrix(frml, dat, ...)
sc <- smm@contrasts
mEQ(as(smm, "generalMatrix"), Matrix(mm, sparse=TRUE)) &
identical(smm@assign, attr(mm, "assign")) &
(if(is.null(mc <- attr(mm, "contrasts"))) length(sc) == 0 else identical(sc, mc))
}
### ------------ all the "datasets" we construct for use -------------
dd <- data.frame(a = gl(3,4), b = gl(4,1,12))# balanced 2-way
(dd3 <- cbind(dd, c = gl(2,6), d = gl(3,8)))
dd. <- dd3[- c(1, 13:15, 17), ]
set.seed(17)
dd4 <- cbind(dd, c = gl(2,6), d = gl(8,3))
dd4 <- cbind(dd4, x = round(rnorm(nrow(dd4)), 1))
dd4 <- dd4[- c(1, 13:15, 17), ]
##-> 'd' has unused levels
dM <- dd4
dM$X <- outer(10*rpois(nrow(dM), 2), 1:3)
dM$Y <- cbind(pmax(0, dM$x - .3), floor(4*rnorm(nrow(dM))))
str(dM)# contains *matrices*
options("contrasts") # the default: "contr.treatment"
op <- options(sparse.colnames = TRUE) # for convenience
stopifnot(identical(## non-sensical, but "should work" (with a warning each):
sparse.model.matrix(a~ 1, dd),
sparse.model.matrix( ~ 1, dd)))
sparse.model.matrix(~ a + b, dd, contrasts = list(a="contr.sum"))
sparse.model.matrix(~ a + b, dd, contrasts = list(b="contr.SAS"))
xm <- sparse.model.matrix(~ x, dM) # gives a warning, correctly
dxm <- Matrix(model.matrix(~ x, dM), sparse=TRUE)
stopifnot(is(xm, "sparseMatrix"), mEQ(as(xm,"generalMatrix"), dxm))
## Sparse method is equivalent to the traditional one :
stopifnot(isEQsparseDense(~ a + b, dd),
suppressWarnings(isEQsparseDense(~ x, dM)),
isEQsparseDense(~ 0 + a + b, dd),
identical(sparse.model.matrix(~ 0 + a + b, dd),
sparse.model.matrix(~ -1 + a + b, dd)),
isEQsparseDense(~ a + b, dd, contrasts = list(a="contr.sum")),
isEQsparseDense(~ a + b, dd, contrasts = list(a="contr.SAS")),
## contrasts as *functions* or contrast *matrices* :
isEQsparseDense(~ a + b, dd,
contrasts = list(a=contr.sum, b=contr.treatment(4))),
isEQsparseDense(~ a + b, dd, contrasts =
list(a=contr.SAS(3),# << ok after 'contrasts<-' update
b = function(n, contr=TRUE, sparse=FALSE)
contr.sum(n=n, contr=contr, sparse=sparse))))
sm <- sparse.model.matrix(~a * b, dd,
contrasts = list(a= contr.SAS(3, sparse = TRUE)))
sm
## FIXME: Move part of this to ../../MatrixModels/tests/
##stopifnot(all(sm == model.Matrix( ~a * b, dd, contrasts= list(a= contr.SAS(3)))))
##
stopifnot(isEQsparseDense(~ a + b + c + d, dd.))
stopifnot(isEQsparseDense(~ a + b:c + c + d, dd.))
## no intercept -- works too
stopifnot(isEQsparseDense(~ -1+ a + b + c + d, dd.))
stopifnot(isEQsparseDense(~ 0 + a + b:c + c + d, dd.))
Sparse.model.matrix <- function(...) {
s <- sparse.model.matrix(...)
as(s, "generalMatrix")# dropping 'assign',.. slots
}
##
dim(mm <- Matrix(model.matrix(~ a + b + c + d, dd4), sparse=TRUE))
dim(sm <- Sparse.model.matrix(~ a + b + c + d, dd4))
## dimension differ !!
stopifnot(mEQ(sm, mm)) ## but that's ok, since mm has all-0 column !
## look at this :
all(mm[,"d5"] == 0) ## !!!! --- correct: a column of all 0 <--> dropped level!
stopifnot(all.equal(sm, mm[, - which("d5" == colnames(mm))])) ## indeed !
## i.e., sm has just dropped an all zero column --- which it should!
stopifnot(isEQsparseDense(~ 1 + sin(x) + b*c + a:x, dd4, show=TRUE))
stopifnot(isEQsparseDense(~ I(a) + b*c + a:x, dd4, show=TRUE))
## no intercept -- works too
stopifnot(isEQsparseDense(~ 0+ I(a) + b*c + a:x, dd4, show=TRUE))
f <- ~ 1 + a + b*c + a*x
attr(terms(f, data=dd4), "factors")
dim(mm <- Matrix(model.matrix(f, data=dd4), sparse=TRUE))
dim(sm <- Sparse.model.matrix(f, data=dd4)) # ==
stopifnot(mEQ(sm, mm))
f <- ~ a*X + X*Y + a*c
attr(terms(f, data=dM), "factors")
dim(mm <- Matrix(model.matrix(f, data=dM), sparse=TRUE))
dim(sm <- Sparse.model.matrix(f, data=dM))
stopifnot(mEQ(sm, mm))
f <- ~ 1 + a + b*c + a*x + b*d*x + b:c:d
attr(terms(f, data=dd4), "factors")
dim(mm <- Matrix(model.matrix(f, data=dd4), sparse=TRUE)) ## 19 100
dim(sm <- Sparse.model.matrix(f, data=dd4)) # 19 88
stopifnot(mEQ(sm, mm))# {20 and 32 zero-columns ..}
## now get a bit courageous:
##
## stopifnot(isEQsparseDense(~ 1 + c + a:b:d, dat=dd4))
dim(mm <- Matrix(model.matrix(~ 1 + a + b*c + a:b:c:d, data=dd4),
sparse=TRUE)) ## 19 202
dim(sm <- Sparse.model.matrix(~ 1 + a + b*c + a:b:c:d, data=dd4)) # fails
stopifnot(mEQ(sm, mm))## {149 and 173 zero-columns !}
## stopifnot(isEQsparseDense(~ 1 + a + b*c + a:b:c:d, dat=dd4))
dim(mm <- Matrix(model.matrix(~ 1 + a + b:c + a:b:d, data=dd4),
sparse=TRUE)) ## 19 107
dim(sm <- Sparse.model.matrix(~ 1 + a + b:c + a:b:d, data=dd4)) # fails
stopifnot(mEQ(sm, mm))
dim(mm <- Matrix(model.matrix(~ a*b*c +c*d, dd4), sparse=TRUE)) ## 19 38
dim(sm <- Sparse.model.matrix(~ a*b*c +c*d, dd4))# 19 36
stopifnot(mEQ(sm, mm))
f1 <- ~ (a+b+c+d)^2 + (a+b):c:d + a:b:c:d
f2 <- ~ (a+b+c+d)^4 - a:b:c - a:b:d
mm1 <- Matrix(model.matrix(f1, dd4), sparse=TRUE)
dim(mm2 <- Matrix(model.matrix(f2, dd4), sparse=TRUE))
sm1 <- sparse.model.matrix(f1, dd4)
dim(sm2 <- sparse.model.matrix(f2, dd4))
stopifnot(identical(mm1,mm2),
identical(sm1,sm2),
mEQ(sm1, mm1))
str(dd <- data.frame(d = gl(10,6), a = ordered(gl(3,20))))
X. <- sparse.model.matrix(~ a + d, data = dd)
## failed because of contr.poly default in Matrix 0.999375-33
stopifnot(dim(X.) == c(60, 12), nnzero(X.) == 234,
isEQsparseDense(~ 0 + d + I(as.numeric(d)^2), dd))
## I(.) failed (upto 2010-05-07)
cat('Time elapsed: ', proc.time(),'\n') # for ``statistical reasons''
if(!interactive()) warnings()
|