File: AllClass.R

package info (click to toggle)
rmatrix 1.3-2-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 7,024 kB
  • sloc: ansic: 42,435; makefile: 330; sh: 180
file content (952 lines) | stat: -rw-r--r-- 35,316 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
## --- New "logic" class -- currently using "raw" instead of "logical"
## LOGIC setClass("logic", contains = "raw")

##' To be used in initialize method or other Matrix constructors
##'
##' TODO: via .Call(..)
.fixupDimnames <- function(dnms) {
    N.N <- list(NULL, NULL)
    if(is.null(dnms) || identical(dnms, N.N)) return(N.N)
    ## else
    if(any(i0 <- lengths(dnms) == 0) && !all(vapply(dnms[i0], is.null, NA)))
	## replace character(0) etc, by NULL :
	dnms[i0] <- list(NULL)
    ## coerce, e.g. integer dimnames to character: -- as  R's matrix(..):
    if(any(i0 <- vapply(dnms, function(d) !is.null(d) && !is.character(d), NA)))
	dnms[i0] <- lapply(dnms[i0], as.character)
    dnms
}


## ------------- Virtual Classes ----------------------------------------

## Mother class of all Matrix objects
setClass("Matrix", contains = "VIRTUAL",
	 slots = c(Dim = "integer", Dimnames = "list"),
	 prototype = prototype(Dim = integer(2), Dimnames = list(NULL,NULL)),
	 validity = function(object) {
	     if(!isTRUE(r <- .Call(Dim_validate, object, "Matrix")))
                 r
             else .Call(dimNames_validate, object)
	 })

if(FALSE)## Allowing 'Dimnames' to define 'Dim' --> would require changes in
    ##  ../src/Mutils.c dimNames_validate() and how it is used in validity above
setMethod("initialize", "Matrix", function(.Object, ...)
    {
        .Object <- callNextMethod()
	if(length(args <- list(...)) && any(nzchar(snames <- names(args))) && "Dimnames" %in% snames)
	{
	    .Object@Dimnames <- DN <- .fixupDimnames(.Object@Dimnames)
	    if(is.na(match("Dim", snames)) && !any(vapply(DN, is.null, NA)))
		## take 'Dim' from 'Dimnames' dimensions
		.Object@Dim <- lengths(DN, use.names=FALSE)
	}
	.Object
    })

if(getRversion() >= "3.2.0") {
setMethod("initialize", "Matrix", function(.Object, ...)
    {
        .Object <- callNextMethod()
	if(length(args <- list(...)) && any(nzchar(snames <- names(args))) && "Dimnames" %in% snames)
	    .Object@Dimnames <- .fixupDimnames(.Object@Dimnames)
	.Object
    })
} else { ## R < 3.2.0
setMethod("initialize", "Matrix", function(.Object, ...)
    {
	.Object <- callNextMethod(.Object, ...)
	if(length(args <- list(...)) && any(nzchar(snames <- names(args))) && "Dimnames" %in% snames)
	    .Object@Dimnames <- .fixupDimnames(.Object@Dimnames)
	.Object
    })
}

## The class of composite matrices - i.e. those for which it makes sense to
## create a factorization
setClass("compMatrix", contains = c("Matrix", "VIRTUAL"),
	 slots = c(factors = "list"))

## Virtual classes of Matrices determined by above/below diagonal relationships

setClass("generalMatrix", contains = c("compMatrix", "VIRTUAL"))

setClass("symmetricMatrix", contains = c("compMatrix", "VIRTUAL"),
	 slots = c(uplo = "character"),
	 prototype = prototype(uplo = "U"),
	 validity = function(object) .Call(symmetricMatrix_validate, object))

setClass("triangularMatrix", contains = c("Matrix", "VIRTUAL"),
	 slots = c(uplo = "character", diag = "character"),
	 prototype = prototype(uplo = "U", diag = "N"),
	 validity = function(object) .Call(triangularMatrix_validate, object))


## Virtual class of numeric matrices
setClass("dMatrix", contains = c("Matrix", "VIRTUAL"), slots = c(x = "numeric"),
	 validity = function(object) .Call(dMatrix_validate, object))

## Virtual class of integer matrices
setClass("iMatrix", contains = c("Matrix", "VIRTUAL"), slots = c(x = "integer"))

## Virtual class of logical matrices
setClass("lMatrix", contains = c("Matrix", "VIRTUAL"), slots = c(x = "logical"))

## Virtual class of nonzero pattern matrices
setClass("nMatrix", contains = c("Matrix", "VIRTUAL"))
## aka 'pattern' matrices -- have no x slot

## Virtual class of complex matrices - 'z'  as in the names of Lapack routines
setClass("zMatrix", contains = c("Matrix", "VIRTUAL"), slots = c(x = "complex"))

## Virtual class of dense matrices (including "packed")
setClass("denseMatrix", contains = c("Matrix", "VIRTUAL"))

## Virtual class of dense, numeric matrices
setClass("ddenseMatrix", contains = c("dMatrix", "denseMatrix", "VIRTUAL"))

## Virtual class of dense, logical matrices
setClass("ldenseMatrix", contains = c("lMatrix", "denseMatrix", "VIRTUAL"))

if(FALSE) { ##--not yet--
setClass("idenseMatrix", contains = c("iMatrix", "denseMatrix", "VIRTUAL"))
}

## Virtual class of dense, nonzero pattern matrices - rarely used, for completeness
setClass("ndenseMatrix", contains = c("nMatrix", "denseMatrix", "VIRTUAL"),
	 slots = c(x = "logical"))


## virtual SPARSE ------------

setClass("sparseMatrix", contains = c("Matrix", "VIRTUAL"))

## diagonal: has 'diag' slot;  diag = "U"  <--> have identity matrix
setClass("diagonalMatrix", contains = c("sparseMatrix", "VIRTUAL"),
         ## NOTE:                        ^^^^^^ was dense Matrix, until 0.999375-11 (2008-07)
         slots = c(diag = "character"),
	 validity = function(object) {
	     d <- object@Dim
	     if(d[1] != (n <- d[2])) return("matrix is not square")
	     lx <- length(object@x)
	     if(object@diag == "U") {
		 if(lx != 0)
		     return("diag = \"U\" (identity matrix) requires empty 'x' slot")
	     } else if(object@diag == "N") {
		 if(lx != n)
		     return("diagonal matrix has 'x' slot of length != 'n'")
	     } else return("diagonal matrix 'diag' slot must be \"U\" or \"N\"")
	     TRUE
	 },
	 prototype = prototype(diag = "N")
	 )

## sparse matrices in Triplet representation (dgT, lgT, ..):
setClass("TsparseMatrix", contains = c("sparseMatrix", "VIRTUAL"),
	 slots = c(i = "integer", j = "integer"),
	 validity = function(object) .Call(Tsparse_validate, object)
         )

setClass("CsparseMatrix", contains = c("sparseMatrix", "VIRTUAL"),
	 slots = c(i = "integer", p = "integer"),
	 prototype = prototype(p = 0L),# to be valid
         validity = function(object) .Call(Csparse_validate, object)
         )

if(FALSE) { ## in theory.. would be neat for  new("dgCMatrix", Dim = c(3L,3L))
setMethod("initialize", "CsparseMatrix", function(.Object, ...) {
    .Object <- callNextMethod()
    .Object@p <- integer(.Object@Dim[2L] + 1L)
    .Object
})

setMethod("initialize", "RsparseMatrix", function(.Object, ...) {
    .Object <- callNextMethod()
    .Object@p <- integer(.Object@Dim[1L] + 1L)
    .Object
})
}# not yet (fails)

setClass("RsparseMatrix", contains = c("sparseMatrix", "VIRTUAL"),
	 slots = c(p = "integer", j = "integer"),
	 prototype = prototype(p = 0L),# to be valid
	 validity = function(object) .Call(Rsparse_validate, object)
         )

setClass("dsparseMatrix", contains = c("dMatrix", "sparseMatrix", "VIRTUAL"))

setClass("lsparseMatrix", contains = c("lMatrix", "sparseMatrix", "VIRTUAL"))

if(FALSE) { ##--not yet--
setClass("isparseMatrix", contains = c("iMatrix", "sparseMatrix", "VIRTUAL"))
}

## these are the "pattern" matrices for "symbolic analysis" of sparse OPs:
setClass("nsparseMatrix", contains = c("nMatrix", "sparseMatrix", "VIRTUAL"))

## More Class Intersections {for method dispatch}:
if(FALSE) { ## this is "natural" but gives WARNINGs when other packages use "it"
setClass("dCsparseMatrix", contains = c("CsparseMatrix", "dsparseMatrix", "VIRTUAL"))
setClass("lCsparseMatrix", contains = c("CsparseMatrix", "lsparseMatrix", "VIRTUAL"))
setClass("nCsparseMatrix", contains = c("CsparseMatrix", "nsparseMatrix", "VIRTUAL"))

## dense general
setClass("geMatrix", contains = c("denseMatrix", "generalMatrix", "VIRTUAL"))

} else { ## ----------- a version that maybe works better for other pkgs ---------

 ##--> setClassUnion() ... below
}


## ------------------ Proper (non-virtual) Classes ----------------------------

##----------------------  DENSE	 -----------------------------------------

## numeric, dense, general matrices
setClass("dgeMatrix", contains = c("ddenseMatrix", "generalMatrix"),
	 ## checks that length( @ x) == prod( @ Dim):
	 validity = function(object) .Call(dgeMatrix_validate, object))
## i.e. "dgeMatrix" cannot be packed, but "ddenseMatrix" can ..

## numeric, dense, non-packed, triangular matrices
setClass("dtrMatrix",
	 contains = c("ddenseMatrix", "triangularMatrix"),
	 validity = function(object) .Call(dense_nonpacked_validate, object))

## numeric, dense, packed, triangular matrices
setClass("dtpMatrix",
	 contains = c("ddenseMatrix", "triangularMatrix"),
	 validity = function(object) .Call(dtpMatrix_validate, object))


## numeric, dense, non-packed symmetric matrices
setClass("dsyMatrix",
         contains = c("ddenseMatrix", "symmetricMatrix"),
	 validity = function(object) .Call(dense_nonpacked_validate, object))

## numeric, dense, packed symmetric matrices
setClass("dspMatrix",
	 contains = c("ddenseMatrix", "symmetricMatrix"),
	 validity = function(object) .Call(dspMatrix_validate, object))

## numeric, dense, non-packed, positive-definite, symmetric matrices
setClass("dpoMatrix", contains = "dsyMatrix",
	 validity = function(object) .Call(dpoMatrix_validate, object)
	 )

## numeric, dense, packed, positive-definite, symmetric matrices
setClass("dppMatrix", contains = "dspMatrix",
	 validity = function(object) .Call(dppMatrix_validate, object)

)
##----- logical dense Matrices -- e.g. as result of <ddenseMatrix>  COMPARISON

## logical, dense, general matrices
setClass("lgeMatrix", contains = c("ldenseMatrix", "generalMatrix"),
         ## since "lge" inherits from "ldenseMatrix", only need this:
	 ## checks that length( @ x) == prod( @ Dim):
	 validity = function(object) .Call(dense_nonpacked_validate, object))
## i.e. "lgeMatrix" cannot be packed, but "ldenseMatrix" can ..

## logical, dense, non-packed, triangular matrices
setClass("ltrMatrix",
	 validity = function(object) .Call(dense_nonpacked_validate, object),
	 contains = c("ldenseMatrix", "triangularMatrix"))

## logical, dense, packed, triangular matrices
setClass("ltpMatrix",
	 contains = c("ldenseMatrix", "triangularMatrix"))

## logical, dense, non-packed symmetric matrices
setClass("lsyMatrix",
	 validity = function(object) .Call(dense_nonpacked_validate, object),
	 contains = c("ldenseMatrix", "symmetricMatrix"))

## logical, dense, packed symmetric matrices
setClass("lspMatrix",
	 contains = c("ldenseMatrix", "symmetricMatrix"),
	 validity = function(object) .Call(dspMatrix_validate, object)
	 ## "dsp", "lsp" and "nsp" have the same validate
	 )

##----- nonzero pattern dense Matrices -- "for completeness"

## logical, dense, general matrices
setClass("ngeMatrix", contains = c("ndenseMatrix", "generalMatrix"),
	 validity = function(object) .Call(dense_nonpacked_validate, object))
## i.e. "ngeMatrix" cannot be packed, but "ndenseMatrix" can ..

## logical, dense, non-packed, triangular matrices
setClass("ntrMatrix",
	 validity = function(object) .Call(dense_nonpacked_validate, object),
	 contains = c("ndenseMatrix", "triangularMatrix"))

## logical, dense, packed, triangular matrices
setClass("ntpMatrix",
	 contains = c("ndenseMatrix", "triangularMatrix"))

## logical, dense, non-packed symmetric matrices
setClass("nsyMatrix",
	 validity = function(object) .Call(dense_nonpacked_validate, object),
	 contains = c("ndenseMatrix", "symmetricMatrix"))

## logical, dense, packed symmetric matrices
setClass("nspMatrix",
	 contains = c("ndenseMatrix", "symmetricMatrix"),
	 validity = function(object) .Call(dspMatrix_validate, object)
	 ## "dsp", "lsp" and "nsp" have the same validate
	 )


## 'diagonalMatrix' already has validity checking
## diagonal, numeric matrices; "dMatrix" has 'x' slot :
setClass("ddiMatrix", contains = c("diagonalMatrix", "dMatrix"))
## diagonal, logical matrices; "lMatrix" has 'x' slot :
setClass("ldiMatrix", contains = c("diagonalMatrix", "lMatrix"))

setClass("corMatrix", slots = c(sd = "numeric"), contains = "dpoMatrix",
	 validity = function(object) {
	     ## assuming that 'dpoMatrix' validity check has already happened:
	     n <- object@Dim[2]
	     if(length(sd <- object@sd) != n)
		 return("'sd' slot must be of length 'dim(.)[1]'")
	     if(any(!is.finite(sd)))# including NA
		 return("'sd' slot has non-finite entries")
	     if(any(sd < 0))
		 return("'sd' slot has negative entries")
	     TRUE
	 })


##-------------------- S P A R S E (non-virtual) --------------------------

##---------- numeric sparse matrix classes --------------------------------

## numeric, sparse, triplet general matrices
setClass("dgTMatrix",
	 contains = c("TsparseMatrix", "dsparseMatrix", "generalMatrix"),
	 validity = function(object) .Call(xTMatrix_validate, object)
	 )

## Should not have dtTMatrix inherit from dgTMatrix because a dtTMatrix could
## be less than fully stored if diag = "U".  Methods for the dgTMatrix
## class would not produce correct results even though all the slots
## are present.

## numeric, sparse, triplet triangular matrices
setClass("dtTMatrix",
	 contains = c("TsparseMatrix", "dsparseMatrix", "triangularMatrix"),
	 validity = function(object) .Call(tTMatrix_validate, object)
	 )

## numeric, sparse, triplet symmetric matrices(also only store one triangle)
setClass("dsTMatrix",
	 contains = c("TsparseMatrix", "dsparseMatrix", "symmetricMatrix"),
	 validity = function(object) .Call(tTMatrix_validate, object)
	 )

## numeric, sparse, sorted compressed sparse column-oriented general matrices
setClass("dgCMatrix",
	 contains = c("CsparseMatrix", "dsparseMatrix", "generalMatrix"),
	 validity = function(object) .Call(xCMatrix_validate, object)
	 )

## special case: indicator rows for a factor - needs more careful definition
##setClass("indicators", contains = "dgCMatrix", slots = c(levels = "character"))

## see comments for dtTMatrix above
## numeric, sparse, sorted compressed sparse column-oriented triangular matrices
setClass("dtCMatrix",
	 contains = c("CsparseMatrix", "dsparseMatrix", "triangularMatrix"),
	 validity = function(object) .Call(tCMatrix_validate, object)
	 )

## see comments for dsTMatrix above
## numeric, sparse, sorted compressed sparse column-oriented symmetric matrices
setClass("dsCMatrix",
	 contains = c("CsparseMatrix", "dsparseMatrix", "symmetricMatrix"),
	 validity = function(object) .Call(tCMatrix_validate, object)
	 )

if(FALSE) ## TODO ??? Class of positive definite (Csparse symmetric) Matrices:
setClass("dpCMatrix", contains = "dsCMatrix",
	 validity = function(object) TODO("test for pos.definite ??"))

## numeric, sparse, sorted compressed sparse row-oriented general matrices
setClass("dgRMatrix",
	 contains = c("RsparseMatrix", "dsparseMatrix", "generalMatrix"),
	 validity = function(object) .Call(xRMatrix_validate, object)
	 )

## numeric, sparse, sorted compressed sparse row-oriented triangular matrices
setClass("dtRMatrix",
	 contains = c("RsparseMatrix", "dsparseMatrix", "triangularMatrix"),
	 validity = function(object) .Call(tRMatrix_validate, object)
	 )

## numeric, sparse, sorted compressed sparse row-oriented symmetric matrices
setClass("dsRMatrix",
	 contains = c("RsparseMatrix", "dsparseMatrix", "symmetricMatrix"),
	 validity = function(object) .Call(tRMatrix_validate, object)
	 )

##---------- logical sparse matrix classes --------------------------------

## these classes are typically result of Matrix comparisons, e.g.,
##   <..Matrix>  >= v     (and hence can have NA's)

## logical, sparse, triplet general matrices
setClass("lgTMatrix",
	 contains = c("TsparseMatrix", "lsparseMatrix", "generalMatrix"),
	 validity = function(object) .Call(xTMatrix_validate, object)
	 )

## logical, sparse, triplet triangular matrices
setClass("ltTMatrix",
	 contains = c("TsparseMatrix", "lsparseMatrix", "triangularMatrix"),
	 validity = function(object) .Call(tTMatrix_validate, object)
	 )

## logical, sparse, triplet symmetric matrices
setClass("lsTMatrix",
	 contains = c("TsparseMatrix", "lsparseMatrix", "symmetricMatrix"),
	 validity = function(object) .Call(tTMatrix_validate, object)
	 )

## logical, sparse, sorted compressed sparse column-oriented general matrices
setClass("lgCMatrix",
	 contains = c("CsparseMatrix", "lsparseMatrix", "generalMatrix"),
	 validity = function(object) .Call(xCMatrix_validate, object)
	 )

## logical, sparse, sorted compressed sparse column-oriented triangular matrices
setClass("ltCMatrix",
	 contains = c("CsparseMatrix", "lsparseMatrix", "triangularMatrix"),
	 validity = function(object) .Call(xCMatrix_validate, object)
	 )

## logical, sparse, sorted compressed sparse column-oriented symmetric matrices
setClass("lsCMatrix",
	 contains = c("CsparseMatrix", "lsparseMatrix", "symmetricMatrix"),
	 validity = function(object) .Call(xCMatrix_validate, object)
	 )

## logical, sparse, sorted compressed sparse row-oriented general matrices
setClass("lgRMatrix",
	 contains = c("RsparseMatrix", "lsparseMatrix", "generalMatrix"),
	 validity = function(object) .Call(xRMatrix_validate, object)
	 )

## logical, sparse, sorted compressed sparse row-oriented triangular matrices
setClass("ltRMatrix",
	 contains = c("RsparseMatrix", "lsparseMatrix", "triangularMatrix"),
	 validity = function(object) .Call(tRMatrix_validate, object)
	 )

## logical, sparse, sorted compressed sparse row-oriented symmetric matrices
setClass("lsRMatrix",
	 contains = c("RsparseMatrix", "lsparseMatrix", "symmetricMatrix"),
	 validity = function(object) .Call(tRMatrix_validate, object)
	 )

##---------- nonzero pattern sparse matrix classes ---------------------------

## these classes are used in symbolic analysis to determine the
## locations of non-zero entries

## nonzero pattern, sparse, triplet general matrices
setClass("ngTMatrix",
	 contains = c("TsparseMatrix", "nsparseMatrix", "generalMatrix")
         ## validity: Tsparse_validate should be enough
	 )

## nonzero pattern, sparse, triplet triangular matrices
setClass("ntTMatrix",
	 contains = c("TsparseMatrix", "nsparseMatrix", "triangularMatrix"),
         ## validity: Tsparse_ and triangular*_validate should be enough
	 )

## nonzero pattern, sparse, triplet symmetric matrices
setClass("nsTMatrix",
	 contains = c("TsparseMatrix", "nsparseMatrix", "symmetricMatrix"),
         ## validity: Tsparse_ and symmetric*_validate should be enough
	 )

## nonzero pattern, sparse, sorted compressed column-oriented matrices
setClass("ngCMatrix",
	 contains = c("CsparseMatrix", "nsparseMatrix", "generalMatrix"),
         ## validity: Csparse_validate should be enough
	 )

setClass("ngCMatrix",
	 contains = c("CsparseMatrix", "nsparseMatrix", "generalMatrix"),
         ## validity: Csparse_validate should be enough
	 )

## nonzero pattern, sparse, sorted compressed column-oriented triangular matrices
setClass("ntCMatrix",
	 contains = c("CsparseMatrix", "nsparseMatrix", "triangularMatrix"),
         ## validity: Csparse_ and triangular*_validate should be enough
	 )

## nonzero pattern, sparse, sorted compressed column-oriented symmetric matrices
setClass("nsCMatrix",
	 contains = c("CsparseMatrix", "nsparseMatrix", "symmetricMatrix"),
         ## validity: Csparse_ and symmetric*_validate should be enough
	 )

## nonzero pattern, sparse, sorted compressed row-oriented general matrices
setClass("ngRMatrix",
	 contains = c("RsparseMatrix", "nsparseMatrix", "generalMatrix"),
	 )

## nonzero pattern, sparse, sorted compressed row-oriented triangular matrices
setClass("ntRMatrix",
	 contains = c("RsparseMatrix", "nsparseMatrix", "triangularMatrix"),
	 )

## nonzero pattern, sparse, sorted compressed row-oriented symmetric matrices
setClass("nsRMatrix",
	 contains = c("RsparseMatrix", "nsparseMatrix", "symmetricMatrix"),
	 )

if(FALSE) { ##--not yet--

##---------- integer sparse matrix classes --------------------------------

## integer, sparse, triplet general matrices
setClass("igTMatrix",
	 contains = c("TsparseMatrix", "isparseMatrix", "generalMatrix"),
	 validity = function(object) .Call(xTMatrix_validate, object)
	 )

## integer, sparse, triplet triangular matrices
setClass("itTMatrix",
	 contains = c("TsparseMatrix", "isparseMatrix", "triangularMatrix"),
	 validity = function(object) .Call(tTMatrix_validate, object)
	 )

## integer, sparse, triplet symmetric matrices
setClass("isTMatrix",
	 contains = c("TsparseMatrix", "isparseMatrix", "symmetricMatrix"),
	 validity = function(object) .Call(tTMatrix_validate, object)
	 )

## integer, sparse, sorted compressed sparse column-oriented general matrices
setClass("igCMatrix",
	 contains = c("CsparseMatrix", "isparseMatrix", "generalMatrix"),
	 validity = function(object) .Call(xCMatrix_validate, object)
	 )

## integer, sparse, sorted compressed sparse column-oriented triangular matrices
setClass("itCMatrix",
	 contains = c("CsparseMatrix", "isparseMatrix", "triangularMatrix"),
	 validity = function(object) .Call(xCMatrix_validate, object)
	 )

## integer, sparse, sorted compressed sparse column-oriented symmetric matrices
setClass("isCMatrix",
	 contains = c("CsparseMatrix", "isparseMatrix", "symmetricMatrix"),
	 validity = function(object) .Call(xCMatrix_validate, object)
	 )

## integer, sparse, sorted compressed sparse row-oriented general matrices
setClass("igRMatrix",
	 contains = c("RsparseMatrix", "isparseMatrix", "generalMatrix"),
	 validity = function(object) .Call(xRMatrix_validate, object)
	 )

## integer, sparse, sorted compressed sparse row-oriented triangular matrices
setClass("itRMatrix",
	 contains = c("RsparseMatrix", "isparseMatrix", "triangularMatrix"),
	 validity = function(object) .Call(tRMatrix_validate, object)
	 )

## integer, sparse, sorted compressed sparse row-oriented symmetric matrices
setClass("isRMatrix",
	 contains = c("RsparseMatrix", "isparseMatrix", "symmetricMatrix"),
	 validity = function(object) .Call(tRMatrix_validate, object)
	 )
}##--not yet--

##-------------------- index and permutation matrices--------------------------

setClass("indMatrix", slots = c(perm = "integer"),
	 contains = c("sparseMatrix", "generalMatrix"),
	 validity = function(object) {
	     n <- object@Dim[1]
	     d <- object@Dim[2]
	     perm <- object@perm
	     if (length(perm) != n)
		 return(paste("length of 'perm' slot must be", n))
	     if(n > 0 && (any(perm > d) || any(perm < 1)))
		 return("'perm' slot is not a valid index")
	     TRUE
	 })

setClass("pMatrix", slots = c(perm = "integer"),
	 contains = c("indMatrix"),
	 validity = function(object) {
	     d <- object@Dim
	     if (d[2] != (n <- d[1])) return("pMatrix must be square")
	     perm <- object@perm
	     if (length(perm) != n)
		 return(paste("length of 'perm' slot must be", n))
	     if(n > 0 &&
		!(all(range(perm) == c(1, n)) && length(unique(perm)) == n))
		 return("'perm' slot is not a valid permutation")
	     TRUE
	 })


### Factorization classes ---------------------------------------------

## Mother class:
setClass("MatrixFactorization", slots = c(Dim = "integer"), contains = "VIRTUAL",
	 validity = function(object) .Call(MatrixFactorization_validate, object))

setClass("CholeskyFactorization", contains = "MatrixFactorization", "VIRTUAL")

## -- Those (exceptions) inheriting from "Matrix" : ---

setClass("Cholesky",  contains = c("dtrMatrix", "CholeskyFactorization"))

#unUsed: setClass("LDL", contains = c("dtrMatrix", "CholeskyFactorization"))

setClass("pCholesky", contains = c("dtpMatrix", "CholeskyFactorization"))

## These are currently only produced implicitly from *solve()
setClass("BunchKaufman", contains = c("dtrMatrix", "MatrixFactorization"),
	 slots = c(perm = "integer"),
	 validity = function(object) .Call(BunchKaufman_validate, object))

setClass("pBunchKaufman", contains = c("dtpMatrix", "MatrixFactorization"),
	 slots = c(perm = "integer"),
	 validity = function(object) .Call(pBunchKaufman_validate, object))

## -- the usual ``non-Matrix'' factorizations : ---------

setClass("CHMfactor", # cholmod_factor struct as S4 object
	 contains = c("CholeskyFactorization", "VIRTUAL"),
	 slots = c(colcount = "integer", perm = "integer", type = "integer"),
	 validity = function(object) .Call(CHMfactor_validate, object))

setClass("CHMsuper",		       # supernodal cholmod_factor
	 contains = c("CHMfactor", "VIRTUAL"),
	 slots = c(super = "integer", pi = "integer", px = "integer",
		   s = "integer"),
	 validity = function(object) .Call(CHMsuper_validate, object))

setClass("CHMsimpl",		       # simplicial cholmod_factor
	 contains = c("CHMfactor", "VIRTUAL"),
	 slots = c(p = "integer", i = "integer", nz = "integer",
		   nxt = "integer", prv = "integer"),
	 validity = function(object) .Call(CHMsimpl_validate, object))

setClass("dCHMsuper", contains = "CHMsuper", slots = c(x = "numeric"))

setClass("nCHMsuper", contains = "CHMsuper")

setClass("dCHMsimpl", contains = "CHMsimpl", slots = c(x = "numeric"))

setClass("nCHMsimpl", contains = "CHMsimpl")

##--- LU ---

setClass("LU", contains = c("MatrixFactorization", "VIRTUAL"))

setClass("denseLU", contains = "LU",
	 slots = c(x = "numeric", perm = "integer", Dimnames = "list"),
	 validity = function(object) .Call(LU_validate, object))

setClass("sparseLU", contains = "LU",
	 slots = c(L = "dtCMatrix", U = "dtCMatrix",
		   p = "integer", q = "integer"))

##--- QR ---

setClass("sparseQR", contains = "MatrixFactorization",
	 slots = c(V = "dgCMatrix", beta = "numeric",
		   p = "integer", R = "dgCMatrix", q = "integer"),
	 validity = function(object) .Call(sparseQR_validate, object))

##-- "SPQR" ---> ./spqr.R  for now

## "denseQR" -- ?  (``a version of''  S3 class "qr")

if (FALSE) { ## unused classes
setClass("csn_QR", slots = c(U = "dgCMatrix", L = "dgCMatrix",
                             beta = "numeric"))

setClass("csn_LU", slots = c(U = "dgCMatrix", L = "dgCMatrix",
                             Pinv = "integer"))

setClass("css_QR", slots = c(Pinv = "integer", Q = "integer",
                             parent = "integer", cp = "integer",
                             nz = "integer"))

setClass("css_LU", slots = c(Q = "integer", nz = "integer"))
}

##-- Schur ---

## non-"Matrix" Class 1  --- For Eigen values:
setClassUnion("number", members = c("numeric", "complex"))

setClass("Schur", contains = "MatrixFactorization",
	 slots = c(T = "Matrix", # <- "block-triangular"; maybe triangular
                   Q = "Matrix", EValues = "number"),
	 validity = function(object) {
	     dim <- object@Dim
	     if((n <- dim[1]) != dim[2])
		 "'Dim' slot is not (n,n)"
	     else if(any(dim(object@T) != n))
		 "'dim(T)' is incorrect"
	     else if(any(dim(object@Q) != n))
		 "'dim(Q)' is incorrect"
	     else if(length(object@EValues) != n)
		 "'EValues' is not of correct length"
	     else TRUE
	 })


### Class Union :  no inheritance, but is(*, <class>) :

setClassUnion("mMatrix", members = c("matrix", "Matrix"))
if(FALSE) ## to be used in setMethod("c", "numM...") -- once that works
setClassUnion("numMatrixLike", members = c("logical", "integer", "numeric", "mMatrix"))

## CARE: Sometimes we'd want all those for which 'x' contains all the data.
##       e.g. Diagonal() is "ddiMatrix" with 'x' slot of length 0, does *not* contain 1
setClassUnion("xMatrix", ## those Matrix classes with an 'x' slot
              c("dMatrix",
                "iMatrix",
                "lMatrix",
                "ndenseMatrix",
                "zMatrix"))

if(TRUE) { ##--- variant of setClass("dCsparse..." ..) etc working better for other pkgs -----

setClassUnion("dCsparseMatrix", members = c("dgCMatrix", "dtCMatrix", "dsCMatrix"))
setClassUnion("lCsparseMatrix", members = c("lgCMatrix", "ltCMatrix", "lsCMatrix"))
setClassUnion("nCsparseMatrix", members = c("ngCMatrix", "ntCMatrix", "nsCMatrix"))

## dense general
setClassUnion("geMatrix", members = c("dgeMatrix", "lgeMatrix", "ngeMatrix"))
}



## Definition  Packed := dense with length( . @x) < prod( . @Dim)
##	       ~~~~~~
## REPLACED the following with	isPacked() in ./Auxiliaries.R :
## setClassUnion("packedMatrix",
##		 members = c("dspMatrix", "dppMatrix", "dtpMatrix",
##		  "lspMatrix", "ltpMatrix", "diagonalMatrix"))


## --------------------- non-"Matrix" Classes --------------------------------

## --- "General" (not Matrix at all) ----

## e.g. for "Arith" methods, NB: --> see "numericVector" below (incl "integer")
setClassUnion("numLike", members = c("numeric", "logical"))

##setClassUnion("numIndex", members = "numeric")

## Note "rle" is a sealed oldClass (and "virtual" as w/o prototype)
setClass("rleDiff", slots = c(first = "numLike", rle = "rle"),
	 prototype = prototype(first = integer(),
			       rle = rle(integer())),
	 validity = function(object) {
	     if(length(object@first) != 1)
		 return("'first' must be of length one")
	     rl <- object@rle
	     if(!is.list(rl) || length(rl) != 2 ||
		!identical(sort(names(rl)), c("lengths", "values")))
		 return("'rle' must be a list (lengths = *, values = *)")
	     if(length(lens <- rl$lengths) != length(vals <- rl$values))
		 return("'lengths' and 'values' differ in length")
	     if(any(lens <= 0))
		 return("'lengths' must be positive")
	     TRUE
	 })

### 2010-03-04 -- thinking about *implementing* some 'abIndex' methodology,
### I conclude that the following structure would probably be even more
### efficient than the "rleDiff" one :
### IDEA: Store subsequences in a numeric matrix of three rows, where
### ----- one column = [from, to, by]  defining a sub seq()ence

## for now, at least use it, and [TODO!] define  "seqMat" <--> "abIndex" coercions:
setClass("seqMat", contains = "matrix",
	 prototype = prototype(matrix(0, nrow = 3, ncol=0)),
	 validity = function(object) {
	     if(!is.numeric(object)) return("is not numeric")
	     d <- dim(object)
	     if(length(d) != 3 || d[1] != 3)
		 return("not a	 3 x n	matrix")
	     if(any(object != floor(object)))
		 return("some entries are not integer valued")
	     TRUE
	 })

setClass("abIndex", # 'ABSTRact Index'
         slots = c(kind = "character",
                   ## one of ("int32", "double", "rleDiff")
                                        # i.e., numeric or "rleDiff"
                   x = "numLike", # for  numeric [length 0 otherwise]
                   rleD = "rleDiff"),  # "rleDiff" result
         prototype = prototype(kind = "int32", x = integer(0)),# rleD = ... etc
         validity = function(object) {
            switch(object@kind,
                   "int32" = if(!is.integer(object@x))
                   return("'x' slot must be integer when kind is 'int32'")
                   ,
                   "double" = if(!is.double(object@x))
                   return("'x' slot must be double when kind is 'double'")
                   ,
                   "rleDiff" = {
                       if(length(object@x))
                   return("'x' slot must be empty when kind is 'rleDiff'")
                   },
                   ## otherwise
                   return("'kind' must be one of (\"int32\", \"double\", \"rleDiff\")")
                   )
            TRUE
         })

## for 'i' in x[i] or A[i,] : (numeric = {double, integer})
## TODO: allow "abIndex" as well !
setClassUnion("index", members =  c("numeric", "logical", "character"))

## "atomic vectors" (-> ?is.atomic ) -- but note that is.atomic(<matrix>) !
## ---------------  those that we want to convert from old-style "matrix"
setClassUnion("atomicVector", ## "double" is not needed, and not liked by some
	      members = c("logical", "integer", "numeric",
			  "complex", "raw", "character"))

## NB: --> see "numLike" above
setClassUnion("numericVector", members = c("logical", "integer", "numeric"))

setClassUnion("Mnumeric", members = c("numericVector", "Matrix"))
## not "matrix" as that extends "vector" and contains "character", "structure" ...

setValidity("Mnumeric",
            function(object) {
                if(is.numeric(object) ||
                   is.logical(object) ||
                   inherits(object, "Matrix")) return(TRUE)
                ## else
                "Not a valid 'Mnumeric' class object"
		})



## --- Matrix - related (but not "Matrix" nor "Decomposition/Factorization):

### Sparse Vectors ---- here use 1-based indexing ! -----------

## 'longindex' should allow sparseVectors of "length" > 2^32,
## which is necessary e.g. when converted from large sparse matrices
## setClass("longindex", contains = "numeric")
## but we use "numeric" instead, for simplicity (efficiency?)
setClass("sparseVector",
         slots = c(length = "numeric", i = "numeric"), contains = "VIRTUAL",
         ##                     "longindex"    "longindex"
         ## note that "numeric" contains "integer" (if I like it or not..)
	 prototype = prototype(length = 0),
         validity = function(object) {
	     n <- object@length
	     if(anyNA(i <- object@i))	 "'i' slot has NAs"
	     else if(any(!is.finite(i))) "'i' slot is not all finite"
	     else if(any(i < 1))	 "'i' must be >= 1"
	     else if(n == 0 && length(i))"'i' must be empty when the object length is zero"
	     else if(any(i > n)) sprintf("'i' must be in 1:%d", n)
	     else if(is.unsorted(i, strictly=TRUE))
		 "'i' must be sorted strictly increasingly"
             else TRUE
         })

##' initialization -- ensuring that  'i' is sorted (and 'x' alongside)
if(getRversion() >= "3.2.0") {
setMethod("initialize", "sparseVector", function(.Object, i, x, ...)
      {
	  has.x <- !missing(x)
	  if(!missing(i)) {
	      i <- ## (be careful to assign in all cases)
		  if(is.unsorted(i, strictly=TRUE)) {
		      if(is(.Object, "xsparseVector") && has.x) {
			  si <- sort.int(i, index.return=TRUE)
			  x <- x[si$ix]
			  si$x
		      }
		      else
			  sort.int(i, method = "quick")
		  }
		  else i
	  }
	  if(has.x) x <- x
	  callNextMethod()
      })
} else { ## R < 3.2.0
setMethod("initialize", "sparseVector", function(.Object, i, x, ...)
      {
	  has.x <- !missing(x)
	  if(!missing(i)) {
	      .Object@i <- ## (be careful to assign in all cases)
		  if(is.unsorted(i, strictly=TRUE)) {
		      if(is(.Object, "xsparseVector") && has.x) {
			  si <- sort.int(i, index.return=TRUE)
			  x <- x[si$ix]
			  si$x
		      }
		      else
			  sort.int(i, method = "quick")
		  }
		  else i
	  }
	  if(has.x) .Object@x <- x
	  callNextMethod(.Object, ...)
      })
}

.validXspVec <- function(object) {
    ## n <- object@length
    if(length(object@i) != length(object@x))
        "'i' and 'x' differ in length"
    else TRUE
}
setClass("dsparseVector",
	 slots = c(x = "numeric"), contains = "sparseVector",
	 validity = .validXspVec)
setClass("isparseVector",
	 slots = c(x = "integer"), contains = "sparseVector",
	 validity = .validXspVec)
setClass("lsparseVector",
	 slots = c(x = "logical"), contains = "sparseVector",
	 validity = .validXspVec)
setClass("zsparseVector",
	 slots = c(x = "complex"), contains = "sparseVector",
	 validity = .validXspVec)
## nsparse has no new slot: 'i' just contains the locations!
setClass("nsparseVector", contains = "sparseVector")

setClassUnion("xsparseVector", ## those sparseVector's with an 'x' slot
              c("dsparseVector",
                "isparseVector",
                "lsparseVector",
                "zsparseVector"))

## for 'value' in  x[..] <- value hence for all "contents" of our Matrices:
setClassUnion("replValue",   members = c("numeric", "logical", "complex", "raw"))
setClassUnion("replValueSp", members = c("replValue", "sparseVector", "Matrix"))


setClass("determinant",
	 slots = c(modulus = "numeric",
		   logarithm = "logical",
		   sign = "integer",
		   call = "call"))