File: Csparse.R

package info (click to toggle)
rmatrix 1.3-2-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 7,024 kB
  • sloc: ansic: 42,435; makefile: 330; sh: 180
file content (540 lines) | stat: -rw-r--r-- 19,928 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
#### Methods for the virtual class 'CsparseMatrix' of sparse matrices stored in
####  "column compressed" format.
#### -- many more specific things are e.g. in ./dgCMatrix.R

setAs("CsparseMatrix", "TsparseMatrix",
      function(from)
          ## |-> cholmod_C -> cholmod_T -> chm_triplet_to_SEXP
          ## modified to support triangular (../src/Csparse.c)
          .Call(Csparse_to_Tsparse, from, is(from, "triangularMatrix")))


## special cases (when a specific "to" class is specified)
setAs("dgCMatrix", "dgTMatrix",
      function(from) .Call(Csparse_to_Tsparse, from, FALSE))

setAs("dsCMatrix", "dsTMatrix",
      function(from) .Call(Csparse_to_Tsparse, from, FALSE))

setAs("dsCMatrix", "dgCMatrix",
      function(from) .Call(Csparse_symmetric_to_general, from))

for(prefix in c("d", "l", "n"))
    setAs(paste0(prefix,"sCMatrix"), "generalMatrix",
	  function(from) .Call(Csparse_symmetric_to_general, from))
rm(prefix)

setAs("dtCMatrix", "dtTMatrix",
      function(from) .Call(Csparse_to_Tsparse, from, TRUE))

if(FALSE) ## old version
C2dense <- function(from) {
    ## |-> cholmod_C -> cholmod_dense -> chm_dense_to_dense
    cld <- getClassDef(class(from))
    if (extends(cld, "generalMatrix"))
	.Call(Csparse_to_dense, from, FALSE)
    else { ## "triangular" or "symmetric" :
        tri <- extends(cld, "triangularMatrix")
	## Csparse_to_dense  loses symmetry and triangularity properties.
	## With suitable changes to chm_dense_to_SEXP (../src/chm_common.c)
	## we could do this in C code -- or do differently in C {FIXME!}
	if (tri && from@diag == "U")
	    from <- .Call(Csparse_diagU2N, from)
	as(.Call(Csparse_to_dense, from, symm = !tri), # -> "[dln]geMatrix"
	   paste0(.M.kindC(cld),
		  .dense.prefixes[if(tri) "t" else "s"], "Matrix"))
    }
}
C2dense <- function(from) .Call(Csparse_to_dense, from, NA_integer_)

setAs("CsparseMatrix", "denseMatrix", C2dense)

## special cases (when a specific "to" class is specified)
setAs("dgCMatrix", "dgeMatrix",   function(from) .Call(Csparse_to_dense, from,  0L))
setAs("dsCMatrix", "denseMatrix", function(from) .Call(Csparse_to_dense, from,  1L))
setAs("dtCMatrix", "denseMatrix", function(from) .Call(Csparse_to_dense, from, -1L))

setAs("dgCMatrix", "vector", function(from) .Call(Csparse_to_vector, from))
setAs("dsCMatrix", "vector", function(from) .Call(Csparse_to_vector, from))
setMethod("as.vector", "dgCMatrix",
	  function(x, mode) as.vector(.Call(Csparse_to_vector, x), mode))
setMethod("as.vector", "dsCMatrix",
	  function(x, mode) as.vector(.Call(Csparse_to_vector, x), mode))
## could do these and more for as(., "numeric") ... but we *do* recommend  as(*,"vector"):
## setAs("dgCMatrix", "numeric", Csp2vec)
## setAs("dsCMatrix", "numeric", Csp2vec)

## |-> cholmod_C -> cholmod_dense -> chm_dense_to_matrix
## cholmod_sparse_to_dense converts symmetric storage to general
## storage so symmetric classes are ok for conversion to matrix.
## unit triangular needs special handling
##' exported
.dxC2mat <- function(from, chkUdiag=TRUE)   .Call(Csparse_to_matrix, from, chkUdiag, NA)
setAs("dgCMatrix", "matrix", function(from) .Call(Csparse_to_matrix, from, FALSE, FALSE))
setAs("dsCMatrix", "matrix", function(from) .Call(Csparse_to_matrix, from, FALSE, TRUE))
setAs("dtCMatrix", "matrix", function(from) .Call(Csparse_to_matrix, from, TRUE,  FALSE))
## NB: Would *not* be ok for l*Matrix or n*Matrix,
## --------- as cholmod coerces to "REAL" aka "double"

..m2dgC <- function(from) .Call(matrix_to_Csparse, from, "dgCMatrix")
..m2lgC <- function(from) .Call(matrix_to_Csparse, from, "lgCMatrix")

.m2dgC <- function(from) {
    if(!is.double(from)) storage.mode(from) <- "double"
    .Call(matrix_to_Csparse, from, "dgCMatrix")
}
.m2lgC <- function(from) {
    if(!is.logical(from)) storage.mode(from) <- "logical"
    .Call(matrix_to_Csparse, from, "lgCMatrix")
}
.m2ngC <- function(from) {
    if(!is.logical(from)) storage.mode(from) <- "logical"
    if(anyNA(from)) stop("cannot coerce NA values to pattern \"ngCMatrix\"")
    .Call(matrix_to_Csparse, from, "ngCMatrix")
}
setAs("matrix", "dgCMatrix", .m2dgC)
setAs("matrix", "lgCMatrix", .m2lgC)
setAs("matrix", "ngCMatrix", .m2ngC)

## Here, use .m2dgC() instead of ..m2dgC() as C-level
##  matrix_to_Csparse(x, "dgCMatrix")  fails when x is *integer* :
setAs("matrix", "CsparseMatrix", ## => choosing 'l*' or 'dgCMatrix' (no tri-, sym-, diag-):
      function(from) (if(is.logical(from)) ..m2lgC else .m2dgC)(from))

setAs("numeric", "CsparseMatrix",
      function(from) (if(is.logical(from)) ..m2lgC else .m2dgC)(as.matrix.default(from)))


setAs("CsparseMatrix", "symmetricMatrix",
      function(from) {
	  if(isSymmetric(from)) forceCspSymmetric(from)
	  else stop("not a symmetric matrix; consider forceSymmetric() or symmpart()")
      })


.validateCsparse <- function(x, sort.if.needed = FALSE)
    .Call(Csparse_validate2, x, sort.if.needed)
##-> to be used in sparseMatrix(.), e.g. --- but is unused currently
## NB: 'sort.if.needed' is called 'maybe_modify' in C -- so be careful
## more useful:
.sortCsparse <- function(x) .Call(Csparse_sort, x) ## modifies 'x' !!

### Some group methods:


### Subsetting -- basic things (drop = "missing") are done in ./Matrix.R
### ---------- "["  and (currently) also ./sparseMatrix.R

subCsp_cols <- function(x, j, drop)
{
    ## x[ , j, drop=drop]   where we know that	x is Csparse*
    dn <- x@Dimnames
    jj <- intI(j, n = x@Dim[2], dn[[2]], give.dn = FALSE)
    r <- .Call(Csparse_submatrix, x, NULL, jj)
    if(!is.null(n <- dn[[1]])) r@Dimnames[[1]] <- n
    if(!is.null(n <- dn[[2]])) r@Dimnames[[2]] <- n[jj+1L]
    if(drop && any(r@Dim == 1L)) drop(as(r, "matrix")) else {
	if(!is.null(n <- names(dn))) names(r@Dimnames) <- n
	r
    }
}

subCsp_rows <- function(x, i, drop)# , cl = getClassDef(class(x))
{
    ## x[ i,  drop=drop]   where we know that  x is Csparse*
    dn <- x@Dimnames
    ii <- intI(i, n = x@Dim[1], dn[[1]], give.dn = FALSE)
    r <- .Call(Csparse_submatrix, x, ii, NULL)
    if(!is.null(n <- dn[[1]])) r@Dimnames[[1]] <- n[ii+1L]
    if(!is.null(n <- dn[[2]])) r@Dimnames[[2]] <- n
    if(drop && any(r@Dim == 1L)) drop(as(r, "matrix")) else {
	if(!is.null(n <- names(dn))) names(r@Dimnames) <- n
	r
    }
}

subCsp_ij <- function(x, i, j, drop)
{
    ## x[i, j, drop=drop]   where we know that	x is Csparse*
    d <- x@Dim
    dn <- x@Dimnames
    ## Take care that	x[i,i]	for symmetricM* stays symmetric
    i.eq.j <- identical(i,j) # < want fast check
    ii <- intI(i, n = d[1], dn[[1]], give.dn = FALSE)
    jj <- if(i.eq.j && d[1] == d[2]) ii
    else intI(j, n = d[2], dn[[2]], give.dn = FALSE)
    r <- .Call(Csparse_submatrix, x, ii, jj)
    if(!is.null(n <- dn[[1]])) r@Dimnames[[1]] <- n[ii + 1L]
    if(!is.null(n <- dn[[2]])) r@Dimnames[[2]] <- n[jj + 1L]
    if(!i.eq.j) {
	if(drop && any(r@Dim == 1L)) drop(as(r, "matrix")) else {
	    if(!is.null(n <- names(dn))) names(r@Dimnames) <- n
	    r
	}
    } else { ## i == j
	if(drop) drop <- any(r@Dim == 1L)
	if(drop)
	    drop(as(r, "matrix"))
	else {
	    if(!is.null(n <- names(dn))) names(r@Dimnames) <- n
	    if(extends((cx <- getClassDef(class(x))), "symmetricMatrix"))
		.gC2sym(r, uplo = x@uplo) # preserving uplo
	    else if(extends(cx, "triangularMatrix") && !is.unsorted(ii))
		as(r, "triangularMatrix")
	    else r
	}
    }
}

setMethod("[", signature(x = "CsparseMatrix", i = "index", j = "missing",
			 drop = "logical"),
	  function (x, i,j, ..., drop) {
	      na <- nargs()
	      Matrix.msg("Csp[i,m,l] : nargs()=",na, .M.level = 2)
	      if(na == 4)
		  subCsp_rows(x, i, drop=drop)
	      else if(na == 3)
		  .M.vectorSub(x, i) # as(x, "TsparseMatrix")[i, drop=drop]
	      else ## should not happen
		  stop("Matrix-internal error in <CsparseM>[i,,d]; please report")
	  })

setMethod("[", signature(x = "CsparseMatrix", i = "missing", j = "index",
			 drop = "logical"),
	  function (x,i,j, ..., drop) {
	      Matrix.msg("Csp[m,i,l] : nargs()=",nargs(), .M.level = 2)
	      subCsp_cols(x, j, drop=drop)
	  })

setMethod("[", signature(x = "CsparseMatrix",
			 i = "index", j = "index", drop = "logical"),
	  function (x, i, j, ..., drop) {
	      Matrix.msg("Csp[i,i,l] : nargs()=",nargs(), .M.level = 2)
	      subCsp_ij(x, i, j, drop=drop)
	  })




## workhorse for "[<-" -- for d*, l*, and n..C-sparse matrices :
## ---------     -----
replCmat <- function (x, i, j, ..., value)
{
    di <- dim(x)
    dn <- dimnames(x)
    iMi <- missing(i)
    jMi <- missing(j)
    na <- nargs()
    Matrix.msg("replCmat[x,i,j,.., val] : nargs()=", na,"; ",
	       if(iMi | jMi) sprintf("missing (i,j) = (%d,%d)", iMi,jMi),
	       .M.level = 2)
    if(na == 3) { ## vector (or 2-col) indexing M[i] <- v : includes M[TRUE] <- v or M[] <- v !
	x <- as(x, "TsparseMatrix")
	x[i] <- value # may change class e.g. from dtT* to dgT*
	clx <- sub(".Matrix$", "CMatrix", (c.x <- class(x)))
	if("x" %in% .slotNames(c.x) && any0(x@x))
	    ## drop all values that "happen to be 0"
	    drop0(x, is.Csparse=FALSE) else as_CspClass(x, clx)
    }
    else ## nargs() == 4 :
	replCmat4(x,
		  i1 = if(iMi) 0:(di[1] - 1L) else .ind.prep2(i, 1, di, dn),
		  i2 = if(jMi) 0:(di[2] - 1L) else .ind.prep2(j, 2, di, dn),
                  iMi=iMi, jMi=jMi, value=value)
} ## replCmat

replCmat4 <- function(x, i1, i2, iMi, jMi, value, spV = is(value,"sparseVector"))
{
    dind <- c(length(i1), length(i2)) # dimension of replacement region
    lenRepl <- prod(dind)
    lenV <- length(value)
    if(lenV == 0) {
	if(lenRepl != 0)
	    stop("nothing to replace with")
	else return(x)
    }
    ## else: lenV := length(value)	 is > 0
    if(lenRepl %% lenV != 0)
	stop("number of items to replace is not a multiple of replacement length")
    if(lenV > lenRepl)
	stop("too many replacement values")

    clx <- class(x)
    clDx <- getClassDef(clx) # extends() , is() etc all use the class definition

    ## keep "symmetry" if changed here:
    x.sym <- extends(clDx, "symmetricMatrix")
    if(x.sym) { ## only half the indices are there..
	## using array() for large dind is a disaster...
	mkArray <- if(spV) # TODO: room for improvement
	    function(v, dim) spV2M(v, dim[1],dim[2]) else array
	x.sym <-
	    (dind[1] == dind[2] && all(i1 == i2) &&
	     (lenRepl == 1 || lenV == 1 ||
	      isSymmetric(mkArray(value, dim=dind))))
	## x.sym : result is *still* symmetric
	x <- .Call(Csparse_symmetric_to_general, x) ## but do *not* redefine clx!
    }
    else if(extends(clDx, "triangularMatrix")) {
	xU <- x@uplo == "U"
	r.tri <- ((any(dind == 1) || dind[1] == dind[2]) &&
		  if(xU) max(i1) <= min(i2) else max(i2) <= min(i1))
	if(r.tri) { ## result is *still* triangular
	    if(any(i1 == i2)) # diagonal will be changed
		x <- diagU2N(x) # keeps class (!)
	}
	else { # go to "generalMatrix" and continue
	    x <- as(x, paste0(.M.kind(x), "gCMatrix")) ## & do not redefine clx!
	}
    }
    ## Temporary hack for debugging --- remove eventually -- FIXME :
    ## see also	 MATRIX_SUBASSIGN_VERBOSE in ../src/t_Csparse_subassign.c
    if(!is.null(v <- getOption("Matrix.subassign.verbose")) && v) {
	op <- options(Matrix.verbose = 2); on.exit(options(op))
	## the "hack" to signal "verbose" to the C code:
	i1[1] <- -i1[1]
	if(i1[1] == 0)
	    warning("i1[1] == 0 ==> C-level verbosity will not happen!")
    }

    if(extends(clDx, "dMatrix")) {
	has.x <- TRUE
	x <- .Call(dCsparse_subassign,
		   if(clx %in% c("dgCMatrix", "dtCMatrix")) x
		   else as(x, "dgCMatrix"),
		   i1, i2,
		   as(value, "sparseVector"))
    }
    else if(extends(clDx, "lMatrix")) {
	has.x <- TRUE
	x <- .Call(lCsparse_subassign,
		   if(clx %in% c("lgCMatrix", "ltCMatrix")) x
		   else as(x, "lgCMatrix"),
		   i1, i2,
		   as(value, "sparseVector"))
    }
    else if(extends(clDx, "nMatrix")) {
	has.x <- FALSE
	x <- .Call(nCsparse_subassign,
		   if(clx %in% c("ngCMatrix", "ntCMatrix"))x
		   else as(x, "ngCMatrix"),
		   i1, i2,
		   as(value, "sparseVector"))
    }
    else if(extends(clDx, "iMatrix")) {
	has.x <- TRUE
	x <- .Call(iCsparse_subassign,
		   if(clx %in% c("igCMatrix", "itCMatrix"))x
		   else as(x, "igCMatrix"),
		   i1, i2,
		   as(value, "sparseVector"))
    }
    else if(extends(clDx, "zMatrix")) {
	has.x <- TRUE
	x <- .Call(zCsparse_subassign,
		   if(clx %in% c("zgCMatrix", "ztCMatrix"))x
		   else as(x, "zgCMatrix"),
		   i1, i2,
		   ## here we only want zsparseVector {to not have to do this in C}:
		   as(value, "zsparseVector"))
    }
    else { ## use "old" code ...
        ## does this happen ? ==>
	if(identical(Sys.getenv("USER"),"maechler"))## does it still happen? __ FIXME __
	    stop("using	 \"old code\" part in  Csparse subassignment")
        ## else
	warning("using\"old code\" part in Csparse subassignment\n >>> please report to Matrix-authors@r-project.org",
		immediate. = TRUE)

	xj <- .Call(Matrix_expand_pointers, x@p)
	sel <- (!is.na(match(x@i, i1)) &
		!is.na(match( xj, i2)))
	has.x <- "x" %in% slotNames(clDx)# === slotNames(x),
	## has.x  <==> *not* nonzero-pattern == "nMatrix"

	if(has.x && sum(sel) == lenRepl) { ## all entries to be replaced are non-zero:
	    ## need indices instead of just 'sel', for, e.g.,  A[2:1, 2:1] <- v
	    non0 <- cbind(match(x@i[sel], i1),
			  match(xj [sel], i2), deparse.level=0L)
	    iN0 <- 1L + .Call(m_encodeInd, non0, di = dind, orig1=TRUE, checkBounds=FALSE)

	    has0 <-
		if(spV) length(value@i) < lenV else any(value[!is.na(value)] == 0)
	    if(lenV < lenRepl)
		value <- rep_len(value, lenRepl)
	    ## Ideally we only replace them where value != 0 and drop the value==0
	    ## ones; FIXME: see Davis(2006) "2.7 Removing entries", p.16, e.g. use cs_dropzeros()
	    ##	     but really could be faster and write something like cs_drop_k(A, k)
	    ## v0 <- 0 == value
	    ## if (lenRepl == 1) and v0 is TRUE, the following is not doing anything
	    ##-	 --> ./dgTMatrix.R	and its	 replTmat()
	    ## x@x[sel[!v0]] <- value[!v0]
	    x@x[sel] <- as.vector(value[iN0])
	    if(extends(clDx, "compMatrix") && length(x@factors)) # drop cashed ones
		x@factors <- list()
	    if(has0) x <- .Call(Csparse_drop, x, 0)

	    return(if(x.sym) as_CspClass(x, clx) else x)
	}
	## else go via Tsparse.. {FIXME: a waste! - we already have 'xj' ..}
	## and inside  Tsparse... the above i1, i2,..., sel  are *all* redone!
	## Happens too often {not anymore, I hope!}
	##
	Matrix.msg("wasteful C -> T -> C in replCmat(x,i,j,v) for <sparse>[i,j] <- v")
	x <- as(x, "TsparseMatrix")
	if(iMi)
	    x[ ,i2+1L] <- value
	else if(jMi)
	    x[i1+1L, ] <- value
	else
	    x[i1+1L,i2+1L] <- value
	if(extends(clDx, "compMatrix") && length(x@factors)) # drop cashed ones
	    x@factors <- list()
    }# else{ not using new memory-sparse  code
    if(has.x && any0(x@x)) ## drop all values that "happen to be 0"
	as_CspClass(drop0(x), clx)
    else as_CspClass(x, clx)
} ## replCmat4

setReplaceMethod("[", signature(x = "CsparseMatrix", i = "index", j = "missing",
                                value = "replValue"),
                 replCmat)

setReplaceMethod("[", signature(x = "CsparseMatrix", i = "missing", j = "index",
                                value = "replValue"),
                 replCmat)

setReplaceMethod("[", signature(x = "CsparseMatrix", i = "index", j = "index",
				value = "replValue"),
                 replCmat)

### When the RHS 'value' is  a sparseVector, now can use  replCmat  as well
setReplaceMethod("[", signature(x = "CsparseMatrix", i = "missing", j = "index",
				value = "sparseVector"),
		 replCmat)

setReplaceMethod("[", signature(x = "CsparseMatrix", i = "index", j = "missing",
				value = "sparseVector"),
		 replCmat)

setReplaceMethod("[", signature(x = "CsparseMatrix", i = "index", j = "index",
				value = "sparseVector"),
		 replCmat)

## A[ ij ] <- value,  where ij is (i,j) 2-column matrix
setReplaceMethod("[", signature(x = "CsparseMatrix", i = "matrix", j = "missing",
				value = "replValue"),
		 function(x, i, j, ..., value)
		 ## goto Tsparse modify and convert back:
		 as(.TM.repl.i.mat(as(x, "TsparseMatrix"), i=i, value=value),
		    "CsparseMatrix"))
## more in ./sparseMatrix.R (and ./Matrix.R )

setReplaceMethod("[", signature(x = "CsparseMatrix", i = "Matrix", j = "missing",
				value = "replValue"),
		 function(x, i, j, ..., value)
		 ## goto Tsparse modify and convert back:
		 as(.TM.repl.i.mat(as(x, "TsparseMatrix"), i=i, value=value),
		    "CsparseMatrix"))


setMethod("t", signature(x = "CsparseMatrix"),
	  function(x) .Call(Csparse_transpose, x, is(x, "triangularMatrix")))


## NB: have extra tril(), triu() methods for symmetric ["dsC" and "lsC"] and
##     for all triangular ones, where the latter may 'callNextMethod()' these:
setMethod("tril", "CsparseMatrix",
	  function(x, k = 0, ...) {
	      k <- as.integer(k[1])
	      dd <- dim(x); sqr <- dd[1] == dd[2]
	      stopifnot(-dd[1] <= k, k <= dd[1]) # had k <= 0
	      r <- .Call(Csparse_band, x, -dd[1], k)
	      ## return "lower triangular" if k <= 0
	      if(sqr && k <= 0) .gC2tC(r, uplo = "L") else r
	  })

setMethod("triu", "CsparseMatrix",
	  function(x, k = 0, ...) {
	      k <- as.integer(k[1])
	      dd <- dim(x); sqr <- dd[1] == dd[2]
	      stopifnot(-dd[1] <= k, k <= dd[1]) # had k >= 0
	      r <- .Call(Csparse_band, x, k, dd[2])
	      ## return "upper triangular" if k >= 0
	      if(sqr && k >= 0) .gC2tC(r, uplo = "U") else r
	  })

setMethod("band", "CsparseMatrix",
	  function(x, k1, k2, ...) {
	      k1 <- as.integer(k1[1])
	      k2 <- as.integer(k2[1])
	      dd <- dim(x); sqr <- dd[1] == dd[2]
	      stopifnot(-dd[1] <= k1, k1 <= k2, k2 <= dd[2])
	      r <- .Call(Csparse_band, diagU2N(x), k1, k2)
	      if(sqr && k1 * k2 >= 0) ## triangular
		  as(r, paste0(.M.kind(x), "tCMatrix"))
	      else if (k1 < 0  &&  k1 == -k2  && isSymmetric(x)) ## symmetric
		  as(r, paste0(.M.kind(x), "sCMatrix"))
	      else
		  r
	  })

setMethod("diag", "CsparseMatrix",
	  function(x, nrow, ncol) {
              ## "FIXME": could be more efficient; creates new ..CMatrix:
	      dm <- .Call(Csparse_band, diagU2N(x), 0, 0)
	      dlen <- min(dm@Dim)
	      ind1 <- dm@i + 1L	# 1-based index vector
	      if (is(dm, "nMatrix")) {
		  val <- rep.int(FALSE, dlen)
		  val[ind1] <- TRUE
	      }
	      else if (is(dm, "lMatrix")) {
		  val <- rep.int(FALSE, dlen)
		  val[ind1] <- as.logical(dm@x)
	      }
	      else {
		  val <- rep.int(0, dlen)
		  ## cMatrix not yet active but for future expansion
		  if (is(dm, "cMatrix")) val <- as.complex(val)
		  val[ind1] <- dm@x
	      }
	      val
	  })

setMethod("writeMM", "CsparseMatrix",
	  function(obj, file, ...)
	  .Call(Csparse_MatrixMarket, obj, path.expand(as.character(file))))

setMethod("Cholesky", signature(A = "CsparseMatrix"),
	  function(A, perm = TRUE, LDL = !super, super = FALSE, Imult = 0, ...)
	  Cholesky(as(A, "symmetricMatrix"),
		   perm=perm, LDL=LDL, super=super, Imult=Imult, ...))

## TODO (in ../TODO for quite a while .....):
setMethod("Cholesky", signature(A = "nsparseMatrix"),
	  function(A, perm = TRUE, LDL = !super, super = FALSE, Imult = 0, ...)
	  stop("Cholesky(<nsparse...>) -> *symbolic* factorization -- not yet implemented"))

if(FALSE)
isDiagCsp <- function(object) {
    d <- dim(object)
    if((n <- d[1]) != d[2])
        FALSE
    else if(n == 0)
        TRUE
    else # (n >= 1)
        ## "FIXME": do this in C  --->>> for now use Csparse_to_Tsparse
        (m <- length(i <- object@i)) == 0 || {
            m <= n && !anyDuplicated(i) &&
                ## length(p <- object@p) == n+1L &&
                all((dp <- diff(object@p)) <= 1L) &&
                length(j <- base::which(dp == 1L)) == m && all(j == i+1L)
        }
}
if(FALSE)
setMethod("isDiagonal", signature(object = "CsparseMatrix"), isDiagCsp)

setMethod("isDiagonal", signature(object = "CsparseMatrix"),
	  function(object) isDiagTsp(.Call(Csparse_to_Tsparse, object, is(object, "triangularMatrix"))))