1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
|
####--- All "Math" and "Math2" group methods for all Matrix classes (incl sparseVector) ------
#### ==== =====
## "Design-bug": log(x, base) has *two* arguments // ditto for "trunc()" !!
## ---> need "log" methods "everywhere to catch 2-arg case !
###--------- Csparse
Math.vecGenerics <- grep("^cum", getGroupMembers("Math"), value=TRUE)
## "cummax" .. "cumsum" : work on full *vector* and return vector also for matrix input
setMethod("Math", "CsparseMatrix", function(x)
{
if(.Generic %nin% Math.vecGenerics && is0(callGeneric(0.))) {
## sparseness, symm., triang.,... preserved
cl <- class(x)
has.x <- !extends(cl, "nsparseMatrix")
## has.x <==> *not* nonzero-pattern == "nMatrix"
if(has.x) {
type <- storage.mode(x@x)
r <- callGeneric(x@x)
} else { ## nsparseMatrix
type <- ""
r <- rep.int(as.double(callGeneric(TRUE)),
switch(.sp.class(cl),
CsparseMatrix = length(x@i),
TsparseMatrix = length(x@i),
RsparseMatrix = length(x@j)))
}
if(type == storage.mode(r)) {
x@x <- r
x
} else { ## e.g. abs( <lgC> ) --> integer Csparse
## FIXME: when we have 'i*' classes, use them here:
rx <- new(sub("^.", "d", MatrixClass(cl)))
rx@x <- as.double(r)
## result is "same"
sNams <- slotNames(cl)
for(nm in sNams[sNams != "x"])
slot(rx, nm) <- slot(x, nm)
rx
}
} else { ## no sparseness (or no matrix!); C2dense() returns *numeric*
callGeneric(C2dense(x))
}
}) ## {Math}
setMethod("log", "CsparseMatrix", function(x, base = exp(1)) log(C2dense(x), base))
###--------- ddenseMatrix
##' Used for dt[rp]Matrix, ds[yp]Matrix (and subclasses, e.g. dpo*(), cor*() !):
##' as dgeMatrix has direct method:
setMethod("Math", "ddenseMatrix", function(x)
{
if(.Generic %in% Math.vecGenerics) # vector result
callGeneric(as(x,"dgeMatrix")@x)
else if(is(x, "symmetricMatrix")) { ## -> result symmetric: keeps class
cld <- getClassDef(cl <- class(x))
if((po <- extends(cld, "dpoMatrix")) || extends(cld, "dppMatrix")) { # result is *not* pos.def!
x <- as(x, if(po) "dsyMatrix" else "dspMatrix")
}
## "symmetricMatrix" has 'factors' slot:
if(!is.null(x@factors)) x@factors <- list()
x@x <- callGeneric(x@x)
x
}
else { ## triangularMatrix (no need for testing), includes, e.g. "corMatrix"!
## if(is0(f0 <- callGeneric(0.))) { ## -> result remains triangular
if(is0(callGeneric(0.))) { ## -> result remains triangular
cld <- getClassDef(cl <- class(x))
if(extends(cld, "triangularMatrix")) {
if((isF <- extends(cld, "MatrixFactorization")) || extends(cld, "corMatrix")) {
x <- as(x, if(isF && .isPacked(x)) "dtpMatrix" else "dtrMatrix")
}
} else
if(inherits(x, "compMatrix")) # has 'factors' slot
if(!is.null(x@factors)) x@factors <- list()
x@x <- callGeneric(x@x)
x
}
else {
if(inherits(x, "compMatrix")) # has 'factors' slot
if(!is.null(x@factors)) x@factors <- list()
## result is general: *could* use f0 <- callGeneric(0.) for the whole 0-triangle,
## but this is much easier:
callGeneric(as(x,"dgeMatrix"))
}
}
})
## "log" with *two* arguments
setMethod("log", "ddenseMatrix", function(x, base = exp(1))
{
if(is(x, "symmetricMatrix")) { ## -> result symmetric: keeps class
cld <- getClassDef(class(x))
if((po <- extends(cld, "dpoMatrix")) || extends(cld, "dppMatrix")) { # result is *not* pos.def!
x <- as(x, if(po) "dsyMatrix" else "dspMatrix")
}
## "symmetricMatrix" has 'factors' slot:
if(!is.null(x@factors)) x@factors <- list()
x@x <- log(x@x, base)
x
}
else { ## triangularMatrix or generalMatrix, includes, e.g. "corMatrix"!
if(inherits(x, "compMatrix")) # has 'factors' slot
if(!is.null(x@factors)) x@factors <- list()
## result is general: *could* use -Inf for the whole 0-triangle,
## but this is much easier:
log(as(x,"dgeMatrix"), base)
}
})
###--------- denseMatrix
## FIXME: Once we have integer (idense..), sign(), abs(.) may need different:
setMethod("Math", signature(x = "denseMatrix"),
function(x) callGeneric(as(x, "dMatrix"))) # -> "ddenseMatrix" above
setMethod("log", "denseMatrix", function(x, base = exp(1)) log(as(x, "dMatrix"), base))
###--------- dgeMatrix
setMethod("Math", signature(x = "dgeMatrix"),
function(x) {
if(.Generic %in% Math.vecGenerics)
callGeneric(x@x)
else {
x@x <- callGeneric(x@x)
x
}
})
setMethod("log", "dgeMatrix", function(x, base = exp(1)) {
x@x <- log(x@x, base)
x
})
###--------- diagMatrix
## Till 2014-08-04, went via "dtC" (triangular)
setMethod("Math", signature(x = "diagonalMatrix"),
function(x) {
if(.Generic %in% Math.vecGenerics) # vector result
callGeneric(.diag2mat(x))
## else if(is0(f0 <- callGeneric(0.))) { ## result remains diagonal
else if(is0(callGeneric(0.))) { ## result remains diagonal
cl <- class(x)
if(!extends(cl, "ddiMatrix"))
cl <- class(x <- as(x, "dMatrix"))
##d type <- storage.mode(x@x)
if(x@diag == "U") {
##d if((f1 <- callGeneric(as1(mod=type))) == 1 && type == "double")
if((f1 <- callGeneric(1.)) == 1)
return(x) # [ddi] as f(0) = 0, f(1) = 1
else {
n <- x@Dim[1]
return( Diagonal(n=n, x = rep.int(f1, n)) )
}
}
r <- callGeneric(x@x)
##d if(type == storage.mode(r)) {
x@x <- r
x
##d } else { ## e.g. abs( <lgC> ) --> integer Csparse
##d ## FIXME: when we have 'i*' classes, use them here:
##d rx <- new(sub("^.", "d", cl))
##d rx@x <- as.double(r)
##d ## result is "same"
##d sNams <- slotNames(cl)
##d for(nm in sNams[sNams != "x"])
##d slot(rx, nm) <- slot(x, nm)
##d rx
##d }
} else { ## no sparseness, i.e., no diagonal, but still symmetric:
## FIXME: gain efficiency by reusing f0 for *all* off-diagonal entries!
callGeneric(as(as(as(.diag2sT(x), "dMatrix"), "denseMatrix"), "dspMatrix"))
}
}) ## {Math}
setMethod("log", "diagonalMatrix", function(x, base = exp(1)) {
## no sparseness, i.e., no diagonal, but still symmetric:
r <- as(as(as(.diag2sT(x), "dMatrix"), "denseMatrix"), "dspMatrix")
diag(r) <- if(x@diag == "U") 0 else log(x@x, base)
## Assign log(0, <base>) == -Inf to all off-diagonal elements;
## indices depend crucially on uplo = "U" / "L" :
n <- x@Dim[[1L]]
if(n >= 1L) {
k <- seq_len(n)
i <- k*(k+1)/2 # as r@uplo == "U"
## } else { # uplo == "L"
## cumsum(c(1, if(n>1) n:2))
## }
r@x[-i] <- -Inf # = log(0, <base>)
}
r
})
## NB: "Math2" (round, signif) for diagMatrix is perfectly via "dMatrix"
###--------- dMatrix
## Use these as "catch-all" -- more specific methods are for sub-classes (sparse)
setMethod("Math2", signature(x = "dMatrix"),
## Assume that Generic(u, k) |--> u for u in {0,1}
## which is true for round(), signif() ==> all structure maintained
function(x, digits) {
x@x <- callGeneric(x@x, digits = digits)
x
})
## the same, first coercing to "dMatrix":
setMethod("Math2", signature(x = "Matrix"),
function(x, digits) {
x <- as(x, "dMatrix")
x@x <- callGeneric(x@x, digits = digits)
x
})
###--------- sparseMatrix
setMethod("Math", signature(x = "sparseMatrix"),
function(x) callGeneric(as(x, "CsparseMatrix")))
setMethod("log", "sparseMatrix", function(x, base = exp(1)) log(as(x, "CsparseMatrix"), base))
###--------- sparseVector
setMethod("Math", signature(x = "sparseVector"),
function(x) {
if(.Generic %nin% Math.vecGenerics && is0(callGeneric(0.))) {
## sparseness preserved
cld <- getClassDef(class(x))
kind <- .M.kindC(cld)# "d", "n", "l", "i", "z", ...
has.x <- kind != "n"
if(has.x) {
rx <- callGeneric(x@x)
if(kind == "d") {
x@x <- rx
x
}
else {
new("dsparseVector", x = rx, i = x@i, length = x@length)
}
} else { ## kind == "n"
new("dsparseVector", x = rep.int(callGeneric(1), length(x@i)),
i = x@i, length = x@length)
}
} else { ## dense
callGeneric(sp2vec(x))
}
})
setMethod("log", "sparseVector", function(x, base = exp(1)) log(sp2vec(x), base))
setMethod("Math2", signature(x = "dsparseVector"),
## Assume that Generic(u, k) |--> u for u in {0,1}
## which is true for round(), signif() ==> all structure maintained
function(x, digits) {
x@x <- callGeneric(x@x, digits = digits)
x
})
## the same, first coercing to "dsparseVector":
setMethod("Math2", signature(x = "sparseVector"),
function(x, digits) {
x <- as(x, "dsparseVector")
x@x <- callGeneric(x@x, digits = digits)
x
})
|