File: Matrix.R

package info (click to toggle)
rmatrix 1.3-2-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 7,024 kB
  • sloc: ansic: 42,435; makefile: 330; sh: 180
file content (757 lines) | stat: -rw-r--r-- 29,323 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
#### Toplevel ``virtual'' class "Matrix"


### Virtual coercions -- via smart "helpers" (-> ./Auxiliaries.R)

setAs("Matrix", "sparseMatrix", function(from) as(from, "CsparseMatrix"))
setAs("Matrix", "CsparseMatrix", function(from) as_Csparse(from))
setAs("Matrix", "denseMatrix",  function(from) as_dense(from))

## Maybe TODO:
## setAs("Matrix", "nMatrix", function(from) ....)

## Anything: we build on  as.matrix(.) :
## ---       authors can always provide their own specific  setAs(*, "Matrix")
setAs("ANY", "Matrix", function(from) Matrix(as.matrix(from)))

## Most of these work; this is a last resort:
setAs("Matrix", "matrix", # do *not* call base::as.matrix() here:
      function(from) .bail.out.2("coerce", class(from), class(to)))
setAs("matrix", "Matrix", function(from) Matrix(from))

## ## probably not needed eventually:
## setAs(from = "ddenseMatrix", to = "matrix",
##       function(from) {
## 	  if(length(d <- dim(from)) != 2) stop("dim(.) has not length 2")
## 	  array(from@x, dim = d, dimnames = dimnames(from))
##       })

.asmatrix <- function(x) as(x, "matrix") # not better; just for those hating typing

## Such that also base functions dispatch properly on our classes:
if(.Matrix.avoiding.as.matrix) {
    as.matrix.Matrix <- function(x, ...) {
        if(nonTRUEoption("Matrix.quiet.as.matrix") && nonTRUEoption("Matrix.quiet"))
            warning("as.matrix(<Matrix>) is deprecated (to become a no-op in the future).
Use  as(x, \"matrix\")  or .asmatrix(x) instead.")
        as(x, "matrix")
    }
    as.array.Matrix <- function(x, ...) {
        warning("as.array(<Matrix>) is deprecated. Use  as(x, \"matrix\")  or .asmatrix(x) instead.")
        as(x, "matrix")
    }
} else { ## regularly -- documented since 2005 that this works
    as.array.Matrix <- as.matrix.Matrix <- function(x, ...) as(x, "matrix")
}

## should propagate to all subclasses:
setMethod("as.matrix", signature(x = "Matrix"), function(x, ...) as(x, "matrix"))
## for 'Matrix' objects, as.array() should be equivalent:
setMethod("as.array",  signature(x = "Matrix"), function(x, ...) as(x, "matrix"))

## head and tail apply to all Matrix objects for which subscripting is allowed:
setMethod("head", signature(x = "Matrix"), utils::head.matrix)
setMethod("tail", signature(x = "Matrix"), utils::tail.matrix)

setMethod("drop", signature(x = "Matrix"),
	  function(x) if(all(dim(x) != 1)) x else drop(as(x, "matrix")))

## slow "fall back" method {subclasses should have faster ones}:
setMethod("as.vector", "Matrix",
	  function(x, mode) as.vector(as(x, "matrix"), mode))
## so base functions calling as.vector() work too:
## S3 dispatch works for base::as.vector(), but S4 dispatch does not
as.vector.Matrix <- function(x, mode) as.vector(as(x, "matrix"), mode)

if(FALSE) { ## still does not work for c(1, Matrix(2))
## For the same reason (and just in case) also do both S3 and S4 here:
c.Matrix <- function(...) unlist(lapply(list(...), as.vector))
## NB: Must use   signature  '(x, ..., recursive = FALSE)' :
setMethod("c", "Matrix", function(x, ..., recursive) c.Matrix(x, ...))
## The above is not sufficient for  c(NA, 3:2, <Matrix>, <matrix>)
setMethod("c", "numMatrixLike", function(x, ..., recursive) c.Matrix(x, ...))
}# not yet

setAs("Matrix", "vector",  function(from) as.vector (as(from, "matrix")))
setAs("Matrix", "numeric", function(from) as.numeric(as(from, "matrix")))
setAs("Matrix", "logical", function(from) as.logical(as(from, "matrix")))
setAs("Matrix", "integer", function(from) as.integer(as(from, "matrix")))
setAs("Matrix", "complex", function(from) as.complex(as(from, "matrix")))

## mainly need these for "dMatrix" or "lMatrix" respectively, but why not general:
setMethod("as.numeric", signature(x = "Matrix"),
	  function(x, ...) as.numeric(as.vector(x)))
setMethod("as.logical", signature(x = "Matrix"),
	  function(x, ...) as.logical(as.vector(x)))

setMethod("mean", signature(x = "sparseMatrix"),
	  function(x, ...) mean(as(x,"sparseVector"), ...))
setMethod("mean", signature(x = "sparseVector"),
	  function(x, trim = 0, na.rm = FALSE, ...)
      {
	  if (na.rm) # remove NAs such that new length() is ok
	      x <- x[!is.na(x)] # remains sparse!
	  if(is0(trim)) sum(x) / length(x)
	  else {
	      ## fast trimmed mean for sparseVector:
	      ## ---> we'd need fast & sparse  sort(<sparseV>).
	      ##      Normally this means to define a xtfrm() method;
	      ##      however, that plus  x[order(x, ..)]  will NOT be sparse
	      ## TODO: sortSparseVector(.)
	      warning("trimmed mean of 'sparseVector' -- suboptimally using as.numeric(.)")
	      mean(as.numeric(x), trim=trim)
	  }
      })
## for the non-"sparseMatrix" ones:
setMethod("mean", signature(x = "Matrix"),
	  function(x, trim = 0, na.rm = FALSE, ...)
      {
	  if (na.rm)
	      x <- x[!is.na(x)]
	  if(is0(trim)) sum(x) / length(x)
	  else mean(as.numeric(x), trim=trim)
      })


## for non-"sparseMatrix" :
setMethod("cov2cor", signature(V = "Matrix"),
	  function(V) { ## was as(cov2cor(as(V, "matrix")), "dpoMatrix"))
	      r <- V
	      p <- (d <- dim(V))[1]
	      if(p != d[2]) stop("'V' is not a square matrix")
	      Is <- sqrt(1/diag(V)) # diag( 1/sigma_i )
	      if(any(!is.finite(Is)))
		  warning("diag(.) had 0 or NA entries; non-finite result is doubtful")
              Is <- Diagonal(x = Is)
              r <- Is %*% V %*% Is
	      r[cbind(1:p,1:p)] <- 1 # exact in diagonal
	      as(forceSymmetric(r), "dpoMatrix")
          })

## "base" has an isSymmetric() S3-generic since R 2.3.0
setMethod("isSymmetric", signature(object = "symmetricMatrix"),
	  function(object, ...) TRUE)
setMethod("isSymmetric", signature(object = "triangularMatrix"),
	  ## TRUE iff diagonal:
	  function(object, ...) isDiagonal(object))

setMethod("isTriangular", signature(object = "matrix"), isTriMat)

setMethod("isDiagonal", signature(object = "matrix"), .is.diagonal)

## The "catch all" methods -- far from optimal:
setMethod("symmpart", signature(x = "Matrix"), function(x)
    as(symmetrizeDimnames(x + t(x))/2, "symmetricMatrix"))
setMethod("skewpart", signature(x = "Matrix"), function(x) symmetrizeDimnames(x - t(x))/2)

## FIXME: do this (similarly as for "ddense.." in C
setMethod("symmpart", signature(x = "matrix"), function(x) symmetrizeDimnames(x + t(x))/2)
setMethod("skewpart", signature(x = "matrix"), function(x) symmetrizeDimnames(x - t(x))/2)


if(getRversion() >= "3.1.0")
## NB: ./nsparseMatrix.R and ./sparseVector.R have extra methods
setMethod("anyNA", signature(x = "xMatrix"),
	  function(x) anyNA(x@x))


setMethod("dim", signature(x = "Matrix"),
	  function(x) x@Dim, valueClass = "integer")

setMethod("length", "Matrix", function(x) prod(dim(x)))

setMethod("dimnames", signature(x = "Matrix"), function(x) x@Dimnames)


## not exported but used more than once for "dimnames<-" method :
## -- or do only once for all "Matrix" classes ??
dimnamesGets <- function (x, value) {
    d <- dim(x)
    if (!is.list(value) || length(value) != 2 ||
	!(is.null(v1 <- value[[1]]) || length(v1) == d[1]) ||
	!(is.null(v2 <- value[[2]]) || length(v2) == d[2]))
	stop(gettextf("invalid dimnames given for %s object", dQuote(class(x))),
	     domain=NA)
    x@Dimnames <- .fixupDimnames(value)
    x
}
dimnamesGetsNULL <- function(x) {
    message("dimnames(.) <- NULL:  translated to \ndimnames(.) <- list(NULL,NULL)  <==>  unname(.)")
    x@Dimnames <- list(NULL,NULL)
    x
}
setMethod("dimnames<-", signature(x = "compMatrix", value = "list"),
          function(x, value) { ## "compMatrix" have 'factors' slot
              if(length(x@factors)) x@factors <- list()
              dimnamesGets(x, value)
          })
setMethod("dimnames<-", signature(x = "Matrix", value = "list"), dimnamesGets)

setMethod("dimnames<-", signature(x = "compMatrix", value = "NULL"),
          function(x, value) { ## "compMatrix" have 'factors' slot
              if(length(x@factors)) x@factors <- list()
              dimnamesGetsNULL(x)
          })

setMethod("dimnames<-", signature(x = "Matrix", value = "NULL"),
	  function(x, value) dimnamesGetsNULL(x))


setMethod("unname", signature("Matrix", force="missing"),
	  function(obj) { obj@Dimnames <- list(NULL,NULL); obj})


Matrix <- function (data = NA, nrow = 1, ncol = 1, byrow = FALSE,
                    dimnames = NULL, sparse = NULL,
                    doDiag = TRUE, forceCheck = FALSE)
{
    i.M <- is(data, "Matrix")
    sM <- FALSE
    if(i.M) {
	if(is(data, "diagonalMatrix")) return(data) # in all cases
	sV <- FALSE
    } else if(inherits(data, "table")) # special treatment
	class(data) <- "matrix" # "matrix" first for S4 dispatch
    else if(is(data, "sparseVector")) {
	data <- spV2M(data, nrow, ncol, byrow=byrow)
	i.M <- sparse <- forceCheck <- sM <- sV <- TRUE
    }
    if(is.null(sparse1 <- sparse) && (i.M || is(data, "matrix")))
	sparse <- sparseDefault(data)
    doDN <- TRUE # by default
    if (i.M) {
	if (!sV) {
	    if(!missing(nrow) || !missing(ncol)|| !missing(byrow))
		warning("'nrow', 'ncol', etc, are disregarded when 'data' is \"Matrix\" already")
	    sM <- is(data,"sparseMatrix")
	    if(!forceCheck && ((sparse && sM) || (!sparse && !sM)))
		return(data)
	    ## else : convert  dense <-> sparse -> at end
	}
    }
    else if(!is.matrix(data)) { ## cut & paste from "base::matrix" :
	## avoid copying to strip attributes in simple cases
	if (is.object(data) || !is.atomic(data)) data <- as.vector(data)
	if(length(data) == 1 && is0(data) && !identical(sparse, FALSE)) {
	    ## Matrix(0, ...) : always sparse unless "sparse = FALSE":
	    if(is.null(sparse)) sparse1 <- sparse <- TRUE
	    i.M <- sM <- TRUE
	    if (missing(nrow)) nrow <- ceiling(1/ncol) else
	    if (missing(ncol)) ncol <- ceiling(1/nrow)
            isSym <- nrow == ncol
	    ## will be sparse: do NOT construct full matrix!
	    data <- new(paste0(if(is.numeric(data)) "d" else
                               if(is.logical(data)) "l" else
                               stop("invalid 'data'"),
                               if(isSym) "s" else "g", "CMatrix"),
			p = rep.int(0L, ncol+1L),
			Dim = as.integer(c(nrow,ncol)),
			Dimnames = if(is.null.DN(dimnames)) list(NULL,NULL)
			else dimnames)
	} else { ## normal case
	    data <- .External(Mmatrix,
			      data, nrow, ncol, byrow, dimnames,
			      missing(nrow), missing(ncol))
	    if(is.null(sparse))
		sparse <- sparseDefault(data)
	}
        doDN <- FALSE # .. set above
    } else if(!missing(nrow) || !missing(ncol)|| !missing(byrow)) ## i.m == is.matrix(.)
	warning("'nrow', 'ncol', etc, are disregarded for matrix 'data'")

    ## 'data' is now a "matrix" or "Matrix"
    if (doDN && !is.null(dimnames))
	dimnames(data) <- dimnames

    ## check for symmetric / triangular / diagonal :
    isSym <- isSymmetric(data)
    if((isTri <- !isSym))
	isTri <- isTriangular(data)
    isDiag <- isSym # cannot be diagonal if it isn't symmetric
    if(isDiag)
	isDiag <- doDiag && isDiagonal(data)

    ## try to coerce ``via'' virtual classes
    if(isDiag) { ## diagonal is preferred to sparse !
	data <- as(data, "diagonalMatrix")
	isSym <- FALSE
    } else if(sparse && !sM)
	data <- as(data, "sparseMatrix")
    else if(!sparse) {
	if(i.M) { ## data is 'Matrix'
	    if(!is(data, "denseMatrix"))
		data <- as(data, "denseMatrix")
	} else { ## data is "matrix" (and result "dense" -> go via "general"
	    ctype <- typeof(data)
	    if (ctype == "complex")
		stop("complex matrices not yet implemented in Matrix package")
	    if (ctype == "integer") ## integer Matrices not yet implemented
		storage.mode(data) <- "double"
	    data <- new(paste0(.M.kind(data), "geMatrix"),
			Dim = dim(data),
			Dimnames = .M.DN(data),
			x = c(data))
	}
    }

    if(isTri && !is(data, "triangularMatrix")) {
	if(attr(isTri,"kind") == "L") tril(data) else triu(data)
    } else if(isSym && !is(data, "symmetricMatrix"))
	forceSymmetric(data)
    else
	data
}

## Methods for operations where one argument is numeric

## maybe not 100% optimal, but elegant:
setMethod("solve", signature(a = "Matrix", b = "missing"),
	  function(a, b, ...) solve(a, Diagonal(nrow(a))))

setMethod("solve", signature(a = "Matrix", b = "numeric"),
	  function(a, b, ...) callGeneric(a, Matrix(b)))
setMethod("solve", signature(a = "Matrix", b = "matrix"),
	  function(a, b, ...) callGeneric(a, Matrix(b)))
setMethod("solve", signature(a = "matrix", b = "Matrix"),
	  function(a, b, ...) callGeneric(Matrix(a), b))

setMethod("solve", signature(a = "Matrix", b = "diagonalMatrix"),
	  function(a, b, ...) callGeneric(a, as(b,"CsparseMatrix")))

## when no sub-class method is found, bail out
setMethod("solve", signature(a = "Matrix", b = "ANY"),
	  function(a, b, ...) .bail.out.2("solve", class(a), class(b)))
setMethod("solve", signature(a = "ANY", b = "Matrix"),
	  function(a, b, ...) .bail.out.2("solve", class(a), class(b)))

setMethod("chol2inv", signature(x = "denseMatrix"),
	  function (x, ...) chol2inv(as(as(x, "dMatrix"), "dtrMatrix"), ...))
setMethod("chol2inv", signature(x = "diagonalMatrix"),
	  function (x, ...) {
	      chk.s(..., which.call=-2)
	      tcrossprod(solve(x))
	  })
setMethod("chol2inv", signature(x = "sparseMatrix"),
	  function (x, ...) {
	      chk.s(..., which.call=-2)
	      ## for now:
	      tcrossprod(solve(as(x,"triangularMatrix")))
	  })

## There are special sparse methods in  ./kronecker.R  ; this is a "fall back":
setMethod("kronecker", signature(X = "Matrix", Y = "ANY",
				 FUN = "ANY", make.dimnames = "ANY"),
	  function(X, Y, FUN, make.dimnames, ...) {
	      if(is(X, "sparseMatrix"))
		  warning("using slow kronecker() method")
	      X <- as(X, "matrix") ; Matrix(callGeneric()) })

setMethod("kronecker", signature(X = "ANY", Y = "Matrix",
				 FUN = "ANY", make.dimnames = "ANY"),
	  function(X, Y, FUN, make.dimnames, ...) {
	      if(is(Y, "sparseMatrix"))
		  warning("using slow kronecker() method")
	      Y <- as(Y, "matrix") ; Matrix(callGeneric()) })


setMethod("determinant", signature(x = "Matrix", logarithm = "missing"),
          function(x, logarithm, ...)
          determinant(x, logarithm = TRUE, ...))

## The ``Right Thing'' to do :
## base::det() calls [base::]determinant();
## our det() should call our determinant() :
det <- base::det
environment(det) <- environment()## == asNamespace("Matrix")

setMethod("Cholesky", signature(A = "Matrix"),
	  function(A, perm = TRUE, LDL = !super, super = FALSE, Imult = 0, ...)
	  stop(gettextf("Cholesky(A) called for 'A' of class \"%s\";\n\t it is currently defined for sparseMatrix only; consider using chol() instead",
			class(A)), call. = FALSE, domain=NA))

## FIXME: All of these should never be called
setMethod("chol", signature(x = "Matrix"),
	  function(x, pivot, ...) .bail.out.1("chol", class(x)))
setMethod("determinant", signature(x = "Matrix", logarithm = "logical"),
	  function(x, logarithm, ...)
	  determinant(as(x,"dMatrix"), logarithm=logarithm, ...))

setMethod("diag", signature(x = "Matrix"),
	  function(x, nrow, ncol) .bail.out.1("diag", class(x)))
if(FALSE)## TODO: activate later
setMethod("diag<-", signature(x = "Matrix"),
	  function(x, value) .bail.out.1("diag", class(x)))
setMethod("t", signature(x = "Matrix"),
	  function(x) .bail.out.1(.Generic, class(x)))

## NB: "sparseMatrix" works via "sparseVector"
setMethod("rep", "Matrix", function(x, ...) rep(as(x, "matrix"), ...))

setMethod("norm", signature(x = "Matrix", type = "character"),
	  function(x, type, ...) .bail.out.1("norm", class(x)))
setMethod("rcond", signature(x = "Matrix", norm = "character"),
	  function(x, norm, ...) .bail.out.1("rcond", class(x)))


## for all :
setMethod("norm", signature(x = "ANY", type = "missing"),
	  function(x, type, ...) norm(x, type = "O", ...))
setMethod("rcond", signature(x = "ANY", norm = "missing"),
	  function(x, norm, ...) rcond(x, norm = "O", ...))

setMethod("lu", "matrix", function(x, warnSing = TRUE, ...)
	  lu(..2dge(x), warnSing=warnSing, ...))



## We want to use all.equal.numeric() *and* make sure that uses
## not just base::as.vector but the generic with our methods:
all.equal_num <- base::all.equal.numeric ## from <R>/src/library/base/R/all.equal.R
environment(all.equal_num) <- environment()## == as.environment("Matrix")

all.equal_Mat <- function(target, current, check.attributes = TRUE,
                          factorsCheck = FALSE, ...)
{
    msg <- attr.all_Mat(target, current, check.attributes=check.attributes,
                        factorsCheck=factorsCheck, ...)
    if(is.list(msg)) msg[[1]]
    else .a.e.comb(msg,
		   all.equal_num(as.vector(target), as.vector(current),
				 check.attributes=check.attributes, ...))
}
## The all.equal() methods for dense matrices (and fallback):
setMethod("all.equal", c(target = "Matrix", current = "Matrix"),
	  all.equal_Mat)
setMethod("all.equal", c(target = "Matrix", current = "ANY"),
	  all.equal_Mat)
setMethod("all.equal", c(target = "ANY", current = "Matrix"),
	  all.equal_Mat)
## -> ./sparseMatrix.R, ./sparseVector.R  have specific methods



## MM: More or less "Cut & paste" from
## --- diff.default() from  R/src/library/base/R/diff.R :
setMethod("diff", signature(x = "Matrix"),
	  function(x, lag = 1, differences = 1, ...) {
	      if (length(lag) > 1 || length(differences) > 1 ||
		  lag < 1 || differences < 1)
		  stop("'lag' and 'differences' must be integers >= 1")
	      xlen <- nrow(x)
	      if (lag * differences >= xlen)
		  return(x[,FALSE][0])	# empty of proper mode

	      i1 <- -1:-lag
	      for (i in 1:differences)
		  x <- x[i1, , drop = FALSE] -
		      x[-nrow(x):-(nrow(x)-lag+1), , drop = FALSE]
	      x
	  })

setMethod("image", "Matrix",
	  function(x, ...) { # coercing to sparse is not inefficient,
	      ##	       since we need 'i' and 'j' for levelplot()
	      x <- as(as(x, "sparseMatrix"), "dsparseMatrix")
              ## note that "ddiMatrix" is "sparse*" and "d*", but *not* dsparse
	      callGeneric()
	  })


## Group Methods

## NOTE:  "&" and "|"  are now in group "Logic" c "Ops" --> ./Ops.R
##        "!" is in ./not.R

## Further, see ./Ops.R
##                ~~~~~


### --------------------------------------------------------------------------
###
### Subsetting "["  and
### SubAssign  "[<-" : The "missing" cases can be dealt with here, "at the top":

## Using "index" for indices should allow
## integer (numeric), logical, or character (names!) indices :

## "x[]":
setMethod("[", signature(x = "Matrix",
			 i = "missing", j = "missing", drop = "ANY"),
	  function (x, i, j, ..., drop) x)

## missing 'drop' --> 'drop = TRUE'
##                     -----------
## select rows __ or __ vector indexing:
setMethod("[", signature(x = "Matrix", i = "index", j = "missing", drop = "missing"),
	  function(x,i,j, ..., drop) {
	      Matrix.msg("M[i,m,m] : nargs()=",nargs(), .M.level = 2)
	      if(nargs() == 2) { ## e.g. M[0] , M[TRUE], M[1:2], M[-7]
                  .M.vectorSub(x,i)
	      } else {
		  callGeneric(x, i=i, , drop=TRUE)
		  ##		      ^^
	      }
	  })
## select columns
setMethod("[", signature(x = "Matrix", i = "missing", j = "index", drop = "missing"),
	  function(x,i,j, ..., drop) {
	      Matrix.msg("M[m,i,m] : nargs()=",nargs(), .M.level = 2)
	      callGeneric(x, , j=j, drop= TRUE)
	  })
## select both rows *and* columns
setMethod("[", signature(x = "Matrix", i = "index", j = "index", drop = "missing"),
	  function(x,i,j, ..., drop) {
	      Matrix.msg("M[i,i,m] : nargs()=",nargs(), .M.level = 2)
	      callGeneric(x, i=i, j=j, drop= TRUE)
	  })

## bail out if any of (i,j,drop) is "non-sense"
setMethod("[", signature(x = "Matrix", i = "ANY", j = "ANY", drop = "ANY"),
	  function(x,i,j, ..., drop)
	  stop("invalid or not-yet-implemented 'Matrix' subsetting"))

## logical indexing, such as M[ M >= 7 ] *BUT* also M[ M[,1] >= 3,],
## The following is *both* for    M [ <logical>   ]
##                 and also for   M [ <logical> , ]
.M.sub.i.logical <- function (x, i, j, ..., drop)
{
    nA <- nargs() # counts 'M[i]' as 2 arguments,  'M[i,]' as 3
    Matrix.msg("M[logi,m,m] : nargs()=", nA, .M.level = 2)
    if(nA == 2) { ##  M [ M >= 7 ]
	## FIXME: when both 'x' and 'i' are sparse, this can be very inefficient
	if(is(x, "sparseMatrix"))
	    message("<sparse>[ <logic> ] : .M.sub.i.logical() maybe inefficient")
	toC <- geClass(x)
	if(canCoerce(x, toC)) as(x, toC)@x[as.vector(i)]
	else as(as(as(x, "generalMatrix"), "denseMatrix"), toC)@x[as.vector(i)]
	## -> error when lengths don't match
    }
    else if(nA == 3) { ## M[ <logic>, ]  e.g.,  M [ M[,1, drop=FALSE] >= 7, ]  or M[TRUE,]
	if(length(i) && x@Dim[1L] && !anyNA(i) && all(i)) ## select everything
	    x
	else ## not selecting all -> result is *NOT* diagonal/triangular/symmetric/..
	    ## keep j missing, but  drop = "logical"
	    callGeneric(as(x,"generalMatrix"), i = i, , drop = TRUE)

    } else stop(gettextf(
		"nargs() = %d.  Extraneous illegal arguments inside '[ .. ]' (i.logical)?",
			 nA), domain=NA)
}

## instead of using 'drop = "ANY"' {against ambiguity notices}:
for(ii in c("lMatrix", "logical"))
    setMethod("[", signature(x = "Matrix", i = ii, j = "missing", drop = "missing"),
	      .M.sub.i.logical)
rm(ii)

##' x[ ij ]  where ij is (i,j) 2-column matrix
##' @note only called from  .M.sub.i.2col(x, i) below
subset.ij <- function(x, ij) {
    m <- nrow(ij)
    if(m > 3) {
        cld <- getClassDef(class(x))
	sym.x <- extends(cld, "symmetricMatrix")
	if(sym.x) {
	    W <- if(x@uplo == "U") # stored only [i,j] with i <= j
		ij[,1] > ij[,2] else ij[,1] < ij[,2]
	    if(any(W))
		ij[W,] <- ij[W, 2:1]
        }
        if(extends(cld, "sparseMatrix")) {
	    ## do something smarter:
	    di <- dim(x)
	    if(!extends(cld, "CsparseMatrix")) {
		x <- as(x, "CsparseMatrix") # simpler; our standard
		cld <- getClassDef(class(x))
	    }
	    tri.x <- extends(cld, "triangularMatrix")
	    if(tri.x) {
		## need these for the 'x' slot in any case
		if (x@diag == "U") x <- .Call(Csparse_diagU2N, x)
		## slightly more efficient than non0.i() or non0ind():
		ij.x <- .Call(compressed_non_0_ij, x, isC=TRUE)
	    } else { ## symmetric / general : for symmetric, only "existing" part
		ij.x <- non0.i(x, cld)
	    }

	    m1 <- .Call(m_encodeInd, ij.x, di, orig1=FALSE, checkBounds=FALSE)
            m2 <- .Call(m_encodeInd, ij,   di, orig1= TRUE, checkBounds= TRUE)
	    mi <- match(m2, m1, nomatch=0)
	    mmi <- mi != 0L ## == (m2 %in% m1)
	    ## Result: all FALSE or 0  apart from where we match non-zero entries
	    ans <- vector(mode = .type.kind[.M.kindC(cld)], length = m)
	    ## those that are *not* zero:
	    ans[mmi] <- if(extends(cld, "nsparseMatrix")) TRUE else x@x[mi[mmi]]
	    if(any(ina <- is.na(m2))) # has one or two NA in that (i,j) row
		is.na(ans) <- ina
	    ans

        } else { ## non-sparse : dense
            ##---- NEVER happens:  'denseMatrix' has its own setMethod(.) !
            message("m[<ij-matrix>]: inefficiently indexing single elements - should not happen, please report!")
            i1 <- ij[,1]
            i2 <- ij[,2]
            ## very inefficient for large m
            unlist(lapply(seq_len(m), function(j) x[i1[j], i2[j]]))
        }
    } else { # 1 <= m <= 3
        i1 <- ij[,1]
        i2 <- ij[,2]
        unlist(lapply(seq_len(m), function(j) x[i1[j], i2[j]]))
    }
}

## A[ ij ]  where ij is (i,j) 2-column matrix -- but also when that is logical mat!
.M.sub.i.2col <- function (x, i, j, ..., drop)
{
    nA <- nargs()
    if(nA != 2)
        stop(domain=NA, gettextf(
            "nargs() = %d.  Extraneous illegal arguments inside '[ .. ]' (i.2col)?", nA))
    ## else: (nA == 2):	 M [ cbind(ii,jj) ] or M [ <logical matrix> ]
    if(!is.integer(nc <- ncol(i)))
        stop(".M.sub.i.2col(): 'i' has no integer column number;\n should never happen; please report")
    if(is.logical(i))
        return(.M.sub.i.logical(x, i=i)) # call with 2 args!
    else if(!is.numeric(i) || nc != 2)
        stop("such indexing must be by logical or 2-column numeric matrix")
    if(!nrow(i)) return(vector(mode = .type.kind[.M.kind(x)]))
    ## else
    subset.ij(x, i)

}
setMethod("[", signature(x = "Matrix", i = "matrix", j = "missing"),# drop="ANY"
	  .M.sub.i.2col)
## just against ambiguity notices :
setMethod("[", signature(x = "Matrix", i = "matrix", j = "missing", drop="missing"),
	  .M.sub.i.2col)


### "[<-" : -----------------

## A[ ij ] <- value,  where ij is (i,j) 2-column matrix :
## ----------------
## The cheap general method, now only used for "pMatrix","indMatrix"
## sparse all use  .TM.repl.i.mat()
## NOTE:  need '...' below such that setMethod() does
##	  not use .local() such that nargs() will work correctly:
.M.repl.i.2col <- function (x, i, j, ..., value)
{
    nA <- nargs()
    if(nA == 3) { ##  M [ cbind(ii,jj) ] <- value  or M [ Lmat ] <- value
	if(!is.integer(nc <- ncol(i)))
	    stop(".M.repl.i.2col(): 'i' has no integer column number;\n should never happen; please report")
	else if(!is.numeric(i) || nc != 2)
	    stop("such indexing must be by logical or 2-column numeric matrix")
	if(is.logical(i)) {
	    message(".M.repl.i.2col(): drop 'matrix' case ...")
	    ## c(i) : drop "matrix" to logical vector
	    return( callGeneric(x, i=c(i), value=value) )
	}
	if(!is.integer(i)) storage.mode(i) <- "integer"
	if(any(i < 0))
	    stop("negative values are not allowed in a matrix subscript")
	if(anyNA(i))
	    stop("NAs are not allowed in subscripted assignments")
	if(any(i0 <- (i == 0))) # remove them
            i <- i[ - which(i0, arr.ind = TRUE)[,"row"], ]
        ## now have integer i >= 1
	m <- nrow(i)
	## mod.x <- .type.kind[.M.kind(x)]
	if(length(value) > 0 && m %% length(value) != 0)
	    warning("number of items to replace is not a multiple of replacement length")
	## recycle:
	value <- rep_len(value, m)
	i1 <- i[,1]
	i2 <- i[,2]
	if(m > 2)
	    message("m[ <ij-matrix> ] <- v: inefficiently treating single elements")
	## inefficient -- FIXME -- (also loses "symmetry" unnecessarily)
	for(k in seq_len(m))
	    x[i1[k], i2[k]] <- value[k]

	x
    } else stop(gettextf(
		"nargs() = %d.  Extraneous illegal arguments inside '[ .. ]' ?",
			 nA), domain=NA)
}

setReplaceMethod("[", signature(x = "Matrix", i = "matrix", j = "missing",
				value = "replValue"),
		 .M.repl.i.2col)

## Three catch-all methods ... would be very inefficient for sparse*
## --> extra methods in ./sparseMatrix.R
setReplaceMethod("[", signature(x = "Matrix", i = "missing", j = "ANY",
				value = "Matrix"),
		 function (x, i, j, ..., value)
		 callGeneric(x=x, , j=j, value = as.vector(value)))

setReplaceMethod("[", signature(x = "Matrix", i = "ANY", j = "missing",
				value = "Matrix"),
		 function (x, i, j, ..., value)
		     if(nargs() == 3)
			 callGeneric(x=x, i=i, value = as.vector(value))
		     else
			 callGeneric(x=x, i=i, , value = as.vector(value)))

setReplaceMethod("[", signature(x = "Matrix", i = "ANY", j = "ANY",
				value = "Matrix"),
		 function (x, i, j, ..., value)
		 callGeneric(x=x, i=i, j=j, value = as.vector(value)))


setReplaceMethod("[", signature(x = "Matrix", i = "missing", j = "ANY",
				value = "matrix"),
		 function (x, i, j, ..., value)
		 callGeneric(x=x, , j=j, value = c(value)))

setReplaceMethod("[", signature(x = "Matrix", i = "ANY", j = "missing",
				value = "matrix"),
		 function (x, i, j, ..., value)
		     if(nargs() == 3)
			 callGeneric(x=x, i=i, value = c(value))
		     else
			 callGeneric(x=x, i=i, , value = c(value)))

setReplaceMethod("[", signature(x = "Matrix", i = "ANY", j = "ANY",
				value = "matrix"),
		 function (x, i, j, value)
		 callGeneric(x=x, i=i, j=j, value = c(value)))

##  M [ <lMatrix> ] <- value; used notably for x = "CsparseMatrix"  -------------------
.repl.i.lDMat <- function (x, i, j, ..., value)
{
    ## nA <- nargs()
    ## if(nA != 3) stop(gettextf("nargs() = %d should never happen; please report.", nA), domain=NA)
    ## else: nA == 3  i.e.,  M [ Lmat ] <- value
    ## x[i] <- value ; return(x)
    `[<-`(x, i=which(as.vector(i)), value=value)
}
setReplaceMethod("[", signature(x = "Matrix", i = "ldenseMatrix", j = "missing",
				value = "replValue"), .repl.i.lDMat)
setReplaceMethod("[", signature(x = "Matrix", i = "ndenseMatrix", j = "missing",
				value = "replValue"), .repl.i.lDMat)
.repl.i.lSMat <- function (x, i, j, ..., value)
{
    ## nA <- nargs()
    ## if(nA != 3) stop(gettextf("nargs() = %d should never happen; please report.", nA), domain=NA)
    ## else: nA == 3  i.e.,  M [ Lmat ] <- value
    ## x[i] <- value ; return(x)
    `[<-`(x, i=which(as(i, "sparseVector")), value=value)
}
setReplaceMethod("[", signature(x = "Matrix", i = "lsparseMatrix", j = "missing",
				value = "replValue"), .repl.i.lSMat)
setReplaceMethod("[", signature(x = "Matrix", i = "nsparseMatrix", j = "missing",
				value = "replValue"), .repl.i.lSMat)

## (ANY,ANY,ANY) is used when no `real method' is implemented :
setReplaceMethod("[", signature(x = "Matrix", i = "ANY", j = "ANY",
                                value = "ANY"),
	  function (x, i, j, value) {
              if(!is.atomic(value))
		  stop(gettextf(
		"RHS 'value' (class %s) matches 'ANY', but must match matrix class %s",
			       class(value), class(x)), domain=NA)
              else stop("not-yet-implemented 'Matrix[<-' method")
          })