1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
|
#### Toplevel ``virtual'' class "Matrix"
### Virtual coercions -- via smart "helpers" (-> ./Auxiliaries.R)
setAs("Matrix", "sparseMatrix", function(from) as(from, "CsparseMatrix"))
setAs("Matrix", "CsparseMatrix", function(from) as_Csparse(from))
setAs("Matrix", "denseMatrix", function(from) as_dense(from))
## Maybe TODO:
## setAs("Matrix", "nMatrix", function(from) ....)
## Anything: we build on as.matrix(.) :
## --- authors can always provide their own specific setAs(*, "Matrix")
setAs("ANY", "Matrix", function(from) Matrix(as.matrix(from)))
## Most of these work; this is a last resort:
setAs("Matrix", "matrix", # do *not* call base::as.matrix() here:
function(from) .bail.out.2("coerce", class(from), class(to)))
setAs("matrix", "Matrix", function(from) Matrix(from))
## ## probably not needed eventually:
## setAs(from = "ddenseMatrix", to = "matrix",
## function(from) {
## if(length(d <- dim(from)) != 2) stop("dim(.) has not length 2")
## array(from@x, dim = d, dimnames = dimnames(from))
## })
.asmatrix <- function(x) as(x, "matrix") # not better; just for those hating typing
## Such that also base functions dispatch properly on our classes:
if(.Matrix.avoiding.as.matrix) {
as.matrix.Matrix <- function(x, ...) {
if(nonTRUEoption("Matrix.quiet.as.matrix") && nonTRUEoption("Matrix.quiet"))
warning("as.matrix(<Matrix>) is deprecated (to become a no-op in the future).
Use as(x, \"matrix\") or .asmatrix(x) instead.")
as(x, "matrix")
}
as.array.Matrix <- function(x, ...) {
warning("as.array(<Matrix>) is deprecated. Use as(x, \"matrix\") or .asmatrix(x) instead.")
as(x, "matrix")
}
} else { ## regularly -- documented since 2005 that this works
as.array.Matrix <- as.matrix.Matrix <- function(x, ...) as(x, "matrix")
}
## should propagate to all subclasses:
setMethod("as.matrix", signature(x = "Matrix"), function(x, ...) as(x, "matrix"))
## for 'Matrix' objects, as.array() should be equivalent:
setMethod("as.array", signature(x = "Matrix"), function(x, ...) as(x, "matrix"))
## head and tail apply to all Matrix objects for which subscripting is allowed:
setMethod("head", signature(x = "Matrix"), utils::head.matrix)
setMethod("tail", signature(x = "Matrix"), utils::tail.matrix)
setMethod("drop", signature(x = "Matrix"),
function(x) if(all(dim(x) != 1)) x else drop(as(x, "matrix")))
## slow "fall back" method {subclasses should have faster ones}:
setMethod("as.vector", "Matrix",
function(x, mode) as.vector(as(x, "matrix"), mode))
## so base functions calling as.vector() work too:
## S3 dispatch works for base::as.vector(), but S4 dispatch does not
as.vector.Matrix <- function(x, mode) as.vector(as(x, "matrix"), mode)
if(FALSE) { ## still does not work for c(1, Matrix(2))
## For the same reason (and just in case) also do both S3 and S4 here:
c.Matrix <- function(...) unlist(lapply(list(...), as.vector))
## NB: Must use signature '(x, ..., recursive = FALSE)' :
setMethod("c", "Matrix", function(x, ..., recursive) c.Matrix(x, ...))
## The above is not sufficient for c(NA, 3:2, <Matrix>, <matrix>)
setMethod("c", "numMatrixLike", function(x, ..., recursive) c.Matrix(x, ...))
}# not yet
setAs("Matrix", "vector", function(from) as.vector (as(from, "matrix")))
setAs("Matrix", "numeric", function(from) as.numeric(as(from, "matrix")))
setAs("Matrix", "logical", function(from) as.logical(as(from, "matrix")))
setAs("Matrix", "integer", function(from) as.integer(as(from, "matrix")))
setAs("Matrix", "complex", function(from) as.complex(as(from, "matrix")))
## mainly need these for "dMatrix" or "lMatrix" respectively, but why not general:
setMethod("as.numeric", signature(x = "Matrix"),
function(x, ...) as.numeric(as.vector(x)))
setMethod("as.logical", signature(x = "Matrix"),
function(x, ...) as.logical(as.vector(x)))
setMethod("mean", signature(x = "sparseMatrix"),
function(x, ...) mean(as(x,"sparseVector"), ...))
setMethod("mean", signature(x = "sparseVector"),
function(x, trim = 0, na.rm = FALSE, ...)
{
if (na.rm) # remove NAs such that new length() is ok
x <- x[!is.na(x)] # remains sparse!
if(is0(trim)) sum(x) / length(x)
else {
## fast trimmed mean for sparseVector:
## ---> we'd need fast & sparse sort(<sparseV>).
## Normally this means to define a xtfrm() method;
## however, that plus x[order(x, ..)] will NOT be sparse
## TODO: sortSparseVector(.)
warning("trimmed mean of 'sparseVector' -- suboptimally using as.numeric(.)")
mean(as.numeric(x), trim=trim)
}
})
## for the non-"sparseMatrix" ones:
setMethod("mean", signature(x = "Matrix"),
function(x, trim = 0, na.rm = FALSE, ...)
{
if (na.rm)
x <- x[!is.na(x)]
if(is0(trim)) sum(x) / length(x)
else mean(as.numeric(x), trim=trim)
})
## for non-"sparseMatrix" :
setMethod("cov2cor", signature(V = "Matrix"),
function(V) { ## was as(cov2cor(as(V, "matrix")), "dpoMatrix"))
r <- V
p <- (d <- dim(V))[1]
if(p != d[2]) stop("'V' is not a square matrix")
Is <- sqrt(1/diag(V)) # diag( 1/sigma_i )
if(any(!is.finite(Is)))
warning("diag(.) had 0 or NA entries; non-finite result is doubtful")
Is <- Diagonal(x = Is)
r <- Is %*% V %*% Is
r[cbind(1:p,1:p)] <- 1 # exact in diagonal
as(forceSymmetric(r), "dpoMatrix")
})
## "base" has an isSymmetric() S3-generic since R 2.3.0
setMethod("isSymmetric", signature(object = "symmetricMatrix"),
function(object, ...) TRUE)
setMethod("isSymmetric", signature(object = "triangularMatrix"),
## TRUE iff diagonal:
function(object, ...) isDiagonal(object))
setMethod("isTriangular", signature(object = "matrix"), isTriMat)
setMethod("isDiagonal", signature(object = "matrix"), .is.diagonal)
## The "catch all" methods -- far from optimal:
setMethod("symmpart", signature(x = "Matrix"), function(x)
as(symmetrizeDimnames(x + t(x))/2, "symmetricMatrix"))
setMethod("skewpart", signature(x = "Matrix"), function(x) symmetrizeDimnames(x - t(x))/2)
## FIXME: do this (similarly as for "ddense.." in C
setMethod("symmpart", signature(x = "matrix"), function(x) symmetrizeDimnames(x + t(x))/2)
setMethod("skewpart", signature(x = "matrix"), function(x) symmetrizeDimnames(x - t(x))/2)
if(getRversion() >= "3.1.0")
## NB: ./nsparseMatrix.R and ./sparseVector.R have extra methods
setMethod("anyNA", signature(x = "xMatrix"),
function(x) anyNA(x@x))
setMethod("dim", signature(x = "Matrix"),
function(x) x@Dim, valueClass = "integer")
setMethod("length", "Matrix", function(x) prod(dim(x)))
setMethod("dimnames", signature(x = "Matrix"), function(x) x@Dimnames)
## not exported but used more than once for "dimnames<-" method :
## -- or do only once for all "Matrix" classes ??
dimnamesGets <- function (x, value) {
d <- dim(x)
if (!is.list(value) || length(value) != 2 ||
!(is.null(v1 <- value[[1]]) || length(v1) == d[1]) ||
!(is.null(v2 <- value[[2]]) || length(v2) == d[2]))
stop(gettextf("invalid dimnames given for %s object", dQuote(class(x))),
domain=NA)
x@Dimnames <- .fixupDimnames(value)
x
}
dimnamesGetsNULL <- function(x) {
message("dimnames(.) <- NULL: translated to \ndimnames(.) <- list(NULL,NULL) <==> unname(.)")
x@Dimnames <- list(NULL,NULL)
x
}
setMethod("dimnames<-", signature(x = "compMatrix", value = "list"),
function(x, value) { ## "compMatrix" have 'factors' slot
if(length(x@factors)) x@factors <- list()
dimnamesGets(x, value)
})
setMethod("dimnames<-", signature(x = "Matrix", value = "list"), dimnamesGets)
setMethod("dimnames<-", signature(x = "compMatrix", value = "NULL"),
function(x, value) { ## "compMatrix" have 'factors' slot
if(length(x@factors)) x@factors <- list()
dimnamesGetsNULL(x)
})
setMethod("dimnames<-", signature(x = "Matrix", value = "NULL"),
function(x, value) dimnamesGetsNULL(x))
setMethod("unname", signature("Matrix", force="missing"),
function(obj) { obj@Dimnames <- list(NULL,NULL); obj})
Matrix <- function (data = NA, nrow = 1, ncol = 1, byrow = FALSE,
dimnames = NULL, sparse = NULL,
doDiag = TRUE, forceCheck = FALSE)
{
i.M <- is(data, "Matrix")
sM <- FALSE
if(i.M) {
if(is(data, "diagonalMatrix")) return(data) # in all cases
sV <- FALSE
} else if(inherits(data, "table")) # special treatment
class(data) <- "matrix" # "matrix" first for S4 dispatch
else if(is(data, "sparseVector")) {
data <- spV2M(data, nrow, ncol, byrow=byrow)
i.M <- sparse <- forceCheck <- sM <- sV <- TRUE
}
if(is.null(sparse1 <- sparse) && (i.M || is(data, "matrix")))
sparse <- sparseDefault(data)
doDN <- TRUE # by default
if (i.M) {
if (!sV) {
if(!missing(nrow) || !missing(ncol)|| !missing(byrow))
warning("'nrow', 'ncol', etc, are disregarded when 'data' is \"Matrix\" already")
sM <- is(data,"sparseMatrix")
if(!forceCheck && ((sparse && sM) || (!sparse && !sM)))
return(data)
## else : convert dense <-> sparse -> at end
}
}
else if(!is.matrix(data)) { ## cut & paste from "base::matrix" :
## avoid copying to strip attributes in simple cases
if (is.object(data) || !is.atomic(data)) data <- as.vector(data)
if(length(data) == 1 && is0(data) && !identical(sparse, FALSE)) {
## Matrix(0, ...) : always sparse unless "sparse = FALSE":
if(is.null(sparse)) sparse1 <- sparse <- TRUE
i.M <- sM <- TRUE
if (missing(nrow)) nrow <- ceiling(1/ncol) else
if (missing(ncol)) ncol <- ceiling(1/nrow)
isSym <- nrow == ncol
## will be sparse: do NOT construct full matrix!
data <- new(paste0(if(is.numeric(data)) "d" else
if(is.logical(data)) "l" else
stop("invalid 'data'"),
if(isSym) "s" else "g", "CMatrix"),
p = rep.int(0L, ncol+1L),
Dim = as.integer(c(nrow,ncol)),
Dimnames = if(is.null.DN(dimnames)) list(NULL,NULL)
else dimnames)
} else { ## normal case
data <- .External(Mmatrix,
data, nrow, ncol, byrow, dimnames,
missing(nrow), missing(ncol))
if(is.null(sparse))
sparse <- sparseDefault(data)
}
doDN <- FALSE # .. set above
} else if(!missing(nrow) || !missing(ncol)|| !missing(byrow)) ## i.m == is.matrix(.)
warning("'nrow', 'ncol', etc, are disregarded for matrix 'data'")
## 'data' is now a "matrix" or "Matrix"
if (doDN && !is.null(dimnames))
dimnames(data) <- dimnames
## check for symmetric / triangular / diagonal :
isSym <- isSymmetric(data)
if((isTri <- !isSym))
isTri <- isTriangular(data)
isDiag <- isSym # cannot be diagonal if it isn't symmetric
if(isDiag)
isDiag <- doDiag && isDiagonal(data)
## try to coerce ``via'' virtual classes
if(isDiag) { ## diagonal is preferred to sparse !
data <- as(data, "diagonalMatrix")
isSym <- FALSE
} else if(sparse && !sM)
data <- as(data, "sparseMatrix")
else if(!sparse) {
if(i.M) { ## data is 'Matrix'
if(!is(data, "denseMatrix"))
data <- as(data, "denseMatrix")
} else { ## data is "matrix" (and result "dense" -> go via "general"
ctype <- typeof(data)
if (ctype == "complex")
stop("complex matrices not yet implemented in Matrix package")
if (ctype == "integer") ## integer Matrices not yet implemented
storage.mode(data) <- "double"
data <- new(paste0(.M.kind(data), "geMatrix"),
Dim = dim(data),
Dimnames = .M.DN(data),
x = c(data))
}
}
if(isTri && !is(data, "triangularMatrix")) {
if(attr(isTri,"kind") == "L") tril(data) else triu(data)
} else if(isSym && !is(data, "symmetricMatrix"))
forceSymmetric(data)
else
data
}
## Methods for operations where one argument is numeric
## maybe not 100% optimal, but elegant:
setMethod("solve", signature(a = "Matrix", b = "missing"),
function(a, b, ...) solve(a, Diagonal(nrow(a))))
setMethod("solve", signature(a = "Matrix", b = "numeric"),
function(a, b, ...) callGeneric(a, Matrix(b)))
setMethod("solve", signature(a = "Matrix", b = "matrix"),
function(a, b, ...) callGeneric(a, Matrix(b)))
setMethod("solve", signature(a = "matrix", b = "Matrix"),
function(a, b, ...) callGeneric(Matrix(a), b))
setMethod("solve", signature(a = "Matrix", b = "diagonalMatrix"),
function(a, b, ...) callGeneric(a, as(b,"CsparseMatrix")))
## when no sub-class method is found, bail out
setMethod("solve", signature(a = "Matrix", b = "ANY"),
function(a, b, ...) .bail.out.2("solve", class(a), class(b)))
setMethod("solve", signature(a = "ANY", b = "Matrix"),
function(a, b, ...) .bail.out.2("solve", class(a), class(b)))
setMethod("chol2inv", signature(x = "denseMatrix"),
function (x, ...) chol2inv(as(as(x, "dMatrix"), "dtrMatrix"), ...))
setMethod("chol2inv", signature(x = "diagonalMatrix"),
function (x, ...) {
chk.s(..., which.call=-2)
tcrossprod(solve(x))
})
setMethod("chol2inv", signature(x = "sparseMatrix"),
function (x, ...) {
chk.s(..., which.call=-2)
## for now:
tcrossprod(solve(as(x,"triangularMatrix")))
})
## There are special sparse methods in ./kronecker.R ; this is a "fall back":
setMethod("kronecker", signature(X = "Matrix", Y = "ANY",
FUN = "ANY", make.dimnames = "ANY"),
function(X, Y, FUN, make.dimnames, ...) {
if(is(X, "sparseMatrix"))
warning("using slow kronecker() method")
X <- as(X, "matrix") ; Matrix(callGeneric()) })
setMethod("kronecker", signature(X = "ANY", Y = "Matrix",
FUN = "ANY", make.dimnames = "ANY"),
function(X, Y, FUN, make.dimnames, ...) {
if(is(Y, "sparseMatrix"))
warning("using slow kronecker() method")
Y <- as(Y, "matrix") ; Matrix(callGeneric()) })
setMethod("determinant", signature(x = "Matrix", logarithm = "missing"),
function(x, logarithm, ...)
determinant(x, logarithm = TRUE, ...))
## The ``Right Thing'' to do :
## base::det() calls [base::]determinant();
## our det() should call our determinant() :
det <- base::det
environment(det) <- environment()## == asNamespace("Matrix")
setMethod("Cholesky", signature(A = "Matrix"),
function(A, perm = TRUE, LDL = !super, super = FALSE, Imult = 0, ...)
stop(gettextf("Cholesky(A) called for 'A' of class \"%s\";\n\t it is currently defined for sparseMatrix only; consider using chol() instead",
class(A)), call. = FALSE, domain=NA))
## FIXME: All of these should never be called
setMethod("chol", signature(x = "Matrix"),
function(x, pivot, ...) .bail.out.1("chol", class(x)))
setMethod("determinant", signature(x = "Matrix", logarithm = "logical"),
function(x, logarithm, ...)
determinant(as(x,"dMatrix"), logarithm=logarithm, ...))
setMethod("diag", signature(x = "Matrix"),
function(x, nrow, ncol) .bail.out.1("diag", class(x)))
if(FALSE)## TODO: activate later
setMethod("diag<-", signature(x = "Matrix"),
function(x, value) .bail.out.1("diag", class(x)))
setMethod("t", signature(x = "Matrix"),
function(x) .bail.out.1(.Generic, class(x)))
## NB: "sparseMatrix" works via "sparseVector"
setMethod("rep", "Matrix", function(x, ...) rep(as(x, "matrix"), ...))
setMethod("norm", signature(x = "Matrix", type = "character"),
function(x, type, ...) .bail.out.1("norm", class(x)))
setMethod("rcond", signature(x = "Matrix", norm = "character"),
function(x, norm, ...) .bail.out.1("rcond", class(x)))
## for all :
setMethod("norm", signature(x = "ANY", type = "missing"),
function(x, type, ...) norm(x, type = "O", ...))
setMethod("rcond", signature(x = "ANY", norm = "missing"),
function(x, norm, ...) rcond(x, norm = "O", ...))
setMethod("lu", "matrix", function(x, warnSing = TRUE, ...)
lu(..2dge(x), warnSing=warnSing, ...))
## We want to use all.equal.numeric() *and* make sure that uses
## not just base::as.vector but the generic with our methods:
all.equal_num <- base::all.equal.numeric ## from <R>/src/library/base/R/all.equal.R
environment(all.equal_num) <- environment()## == as.environment("Matrix")
all.equal_Mat <- function(target, current, check.attributes = TRUE,
factorsCheck = FALSE, ...)
{
msg <- attr.all_Mat(target, current, check.attributes=check.attributes,
factorsCheck=factorsCheck, ...)
if(is.list(msg)) msg[[1]]
else .a.e.comb(msg,
all.equal_num(as.vector(target), as.vector(current),
check.attributes=check.attributes, ...))
}
## The all.equal() methods for dense matrices (and fallback):
setMethod("all.equal", c(target = "Matrix", current = "Matrix"),
all.equal_Mat)
setMethod("all.equal", c(target = "Matrix", current = "ANY"),
all.equal_Mat)
setMethod("all.equal", c(target = "ANY", current = "Matrix"),
all.equal_Mat)
## -> ./sparseMatrix.R, ./sparseVector.R have specific methods
## MM: More or less "Cut & paste" from
## --- diff.default() from R/src/library/base/R/diff.R :
setMethod("diff", signature(x = "Matrix"),
function(x, lag = 1, differences = 1, ...) {
if (length(lag) > 1 || length(differences) > 1 ||
lag < 1 || differences < 1)
stop("'lag' and 'differences' must be integers >= 1")
xlen <- nrow(x)
if (lag * differences >= xlen)
return(x[,FALSE][0]) # empty of proper mode
i1 <- -1:-lag
for (i in 1:differences)
x <- x[i1, , drop = FALSE] -
x[-nrow(x):-(nrow(x)-lag+1), , drop = FALSE]
x
})
setMethod("image", "Matrix",
function(x, ...) { # coercing to sparse is not inefficient,
## since we need 'i' and 'j' for levelplot()
x <- as(as(x, "sparseMatrix"), "dsparseMatrix")
## note that "ddiMatrix" is "sparse*" and "d*", but *not* dsparse
callGeneric()
})
## Group Methods
## NOTE: "&" and "|" are now in group "Logic" c "Ops" --> ./Ops.R
## "!" is in ./not.R
## Further, see ./Ops.R
## ~~~~~
### --------------------------------------------------------------------------
###
### Subsetting "[" and
### SubAssign "[<-" : The "missing" cases can be dealt with here, "at the top":
## Using "index" for indices should allow
## integer (numeric), logical, or character (names!) indices :
## "x[]":
setMethod("[", signature(x = "Matrix",
i = "missing", j = "missing", drop = "ANY"),
function (x, i, j, ..., drop) x)
## missing 'drop' --> 'drop = TRUE'
## -----------
## select rows __ or __ vector indexing:
setMethod("[", signature(x = "Matrix", i = "index", j = "missing", drop = "missing"),
function(x,i,j, ..., drop) {
Matrix.msg("M[i,m,m] : nargs()=",nargs(), .M.level = 2)
if(nargs() == 2) { ## e.g. M[0] , M[TRUE], M[1:2], M[-7]
.M.vectorSub(x,i)
} else {
callGeneric(x, i=i, , drop=TRUE)
## ^^
}
})
## select columns
setMethod("[", signature(x = "Matrix", i = "missing", j = "index", drop = "missing"),
function(x,i,j, ..., drop) {
Matrix.msg("M[m,i,m] : nargs()=",nargs(), .M.level = 2)
callGeneric(x, , j=j, drop= TRUE)
})
## select both rows *and* columns
setMethod("[", signature(x = "Matrix", i = "index", j = "index", drop = "missing"),
function(x,i,j, ..., drop) {
Matrix.msg("M[i,i,m] : nargs()=",nargs(), .M.level = 2)
callGeneric(x, i=i, j=j, drop= TRUE)
})
## bail out if any of (i,j,drop) is "non-sense"
setMethod("[", signature(x = "Matrix", i = "ANY", j = "ANY", drop = "ANY"),
function(x,i,j, ..., drop)
stop("invalid or not-yet-implemented 'Matrix' subsetting"))
## logical indexing, such as M[ M >= 7 ] *BUT* also M[ M[,1] >= 3,],
## The following is *both* for M [ <logical> ]
## and also for M [ <logical> , ]
.M.sub.i.logical <- function (x, i, j, ..., drop)
{
nA <- nargs() # counts 'M[i]' as 2 arguments, 'M[i,]' as 3
Matrix.msg("M[logi,m,m] : nargs()=", nA, .M.level = 2)
if(nA == 2) { ## M [ M >= 7 ]
## FIXME: when both 'x' and 'i' are sparse, this can be very inefficient
if(is(x, "sparseMatrix"))
message("<sparse>[ <logic> ] : .M.sub.i.logical() maybe inefficient")
toC <- geClass(x)
if(canCoerce(x, toC)) as(x, toC)@x[as.vector(i)]
else as(as(as(x, "generalMatrix"), "denseMatrix"), toC)@x[as.vector(i)]
## -> error when lengths don't match
}
else if(nA == 3) { ## M[ <logic>, ] e.g., M [ M[,1, drop=FALSE] >= 7, ] or M[TRUE,]
if(length(i) && x@Dim[1L] && !anyNA(i) && all(i)) ## select everything
x
else ## not selecting all -> result is *NOT* diagonal/triangular/symmetric/..
## keep j missing, but drop = "logical"
callGeneric(as(x,"generalMatrix"), i = i, , drop = TRUE)
} else stop(gettextf(
"nargs() = %d. Extraneous illegal arguments inside '[ .. ]' (i.logical)?",
nA), domain=NA)
}
## instead of using 'drop = "ANY"' {against ambiguity notices}:
for(ii in c("lMatrix", "logical"))
setMethod("[", signature(x = "Matrix", i = ii, j = "missing", drop = "missing"),
.M.sub.i.logical)
rm(ii)
##' x[ ij ] where ij is (i,j) 2-column matrix
##' @note only called from .M.sub.i.2col(x, i) below
subset.ij <- function(x, ij) {
m <- nrow(ij)
if(m > 3) {
cld <- getClassDef(class(x))
sym.x <- extends(cld, "symmetricMatrix")
if(sym.x) {
W <- if(x@uplo == "U") # stored only [i,j] with i <= j
ij[,1] > ij[,2] else ij[,1] < ij[,2]
if(any(W))
ij[W,] <- ij[W, 2:1]
}
if(extends(cld, "sparseMatrix")) {
## do something smarter:
di <- dim(x)
if(!extends(cld, "CsparseMatrix")) {
x <- as(x, "CsparseMatrix") # simpler; our standard
cld <- getClassDef(class(x))
}
tri.x <- extends(cld, "triangularMatrix")
if(tri.x) {
## need these for the 'x' slot in any case
if (x@diag == "U") x <- .Call(Csparse_diagU2N, x)
## slightly more efficient than non0.i() or non0ind():
ij.x <- .Call(compressed_non_0_ij, x, isC=TRUE)
} else { ## symmetric / general : for symmetric, only "existing" part
ij.x <- non0.i(x, cld)
}
m1 <- .Call(m_encodeInd, ij.x, di, orig1=FALSE, checkBounds=FALSE)
m2 <- .Call(m_encodeInd, ij, di, orig1= TRUE, checkBounds= TRUE)
mi <- match(m2, m1, nomatch=0)
mmi <- mi != 0L ## == (m2 %in% m1)
## Result: all FALSE or 0 apart from where we match non-zero entries
ans <- vector(mode = .type.kind[.M.kindC(cld)], length = m)
## those that are *not* zero:
ans[mmi] <- if(extends(cld, "nsparseMatrix")) TRUE else x@x[mi[mmi]]
if(any(ina <- is.na(m2))) # has one or two NA in that (i,j) row
is.na(ans) <- ina
ans
} else { ## non-sparse : dense
##---- NEVER happens: 'denseMatrix' has its own setMethod(.) !
message("m[<ij-matrix>]: inefficiently indexing single elements - should not happen, please report!")
i1 <- ij[,1]
i2 <- ij[,2]
## very inefficient for large m
unlist(lapply(seq_len(m), function(j) x[i1[j], i2[j]]))
}
} else { # 1 <= m <= 3
i1 <- ij[,1]
i2 <- ij[,2]
unlist(lapply(seq_len(m), function(j) x[i1[j], i2[j]]))
}
}
## A[ ij ] where ij is (i,j) 2-column matrix -- but also when that is logical mat!
.M.sub.i.2col <- function (x, i, j, ..., drop)
{
nA <- nargs()
if(nA != 2)
stop(domain=NA, gettextf(
"nargs() = %d. Extraneous illegal arguments inside '[ .. ]' (i.2col)?", nA))
## else: (nA == 2): M [ cbind(ii,jj) ] or M [ <logical matrix> ]
if(!is.integer(nc <- ncol(i)))
stop(".M.sub.i.2col(): 'i' has no integer column number;\n should never happen; please report")
if(is.logical(i))
return(.M.sub.i.logical(x, i=i)) # call with 2 args!
else if(!is.numeric(i) || nc != 2)
stop("such indexing must be by logical or 2-column numeric matrix")
if(!nrow(i)) return(vector(mode = .type.kind[.M.kind(x)]))
## else
subset.ij(x, i)
}
setMethod("[", signature(x = "Matrix", i = "matrix", j = "missing"),# drop="ANY"
.M.sub.i.2col)
## just against ambiguity notices :
setMethod("[", signature(x = "Matrix", i = "matrix", j = "missing", drop="missing"),
.M.sub.i.2col)
### "[<-" : -----------------
## A[ ij ] <- value, where ij is (i,j) 2-column matrix :
## ----------------
## The cheap general method, now only used for "pMatrix","indMatrix"
## sparse all use .TM.repl.i.mat()
## NOTE: need '...' below such that setMethod() does
## not use .local() such that nargs() will work correctly:
.M.repl.i.2col <- function (x, i, j, ..., value)
{
nA <- nargs()
if(nA == 3) { ## M [ cbind(ii,jj) ] <- value or M [ Lmat ] <- value
if(!is.integer(nc <- ncol(i)))
stop(".M.repl.i.2col(): 'i' has no integer column number;\n should never happen; please report")
else if(!is.numeric(i) || nc != 2)
stop("such indexing must be by logical or 2-column numeric matrix")
if(is.logical(i)) {
message(".M.repl.i.2col(): drop 'matrix' case ...")
## c(i) : drop "matrix" to logical vector
return( callGeneric(x, i=c(i), value=value) )
}
if(!is.integer(i)) storage.mode(i) <- "integer"
if(any(i < 0))
stop("negative values are not allowed in a matrix subscript")
if(anyNA(i))
stop("NAs are not allowed in subscripted assignments")
if(any(i0 <- (i == 0))) # remove them
i <- i[ - which(i0, arr.ind = TRUE)[,"row"], ]
## now have integer i >= 1
m <- nrow(i)
## mod.x <- .type.kind[.M.kind(x)]
if(length(value) > 0 && m %% length(value) != 0)
warning("number of items to replace is not a multiple of replacement length")
## recycle:
value <- rep_len(value, m)
i1 <- i[,1]
i2 <- i[,2]
if(m > 2)
message("m[ <ij-matrix> ] <- v: inefficiently treating single elements")
## inefficient -- FIXME -- (also loses "symmetry" unnecessarily)
for(k in seq_len(m))
x[i1[k], i2[k]] <- value[k]
x
} else stop(gettextf(
"nargs() = %d. Extraneous illegal arguments inside '[ .. ]' ?",
nA), domain=NA)
}
setReplaceMethod("[", signature(x = "Matrix", i = "matrix", j = "missing",
value = "replValue"),
.M.repl.i.2col)
## Three catch-all methods ... would be very inefficient for sparse*
## --> extra methods in ./sparseMatrix.R
setReplaceMethod("[", signature(x = "Matrix", i = "missing", j = "ANY",
value = "Matrix"),
function (x, i, j, ..., value)
callGeneric(x=x, , j=j, value = as.vector(value)))
setReplaceMethod("[", signature(x = "Matrix", i = "ANY", j = "missing",
value = "Matrix"),
function (x, i, j, ..., value)
if(nargs() == 3)
callGeneric(x=x, i=i, value = as.vector(value))
else
callGeneric(x=x, i=i, , value = as.vector(value)))
setReplaceMethod("[", signature(x = "Matrix", i = "ANY", j = "ANY",
value = "Matrix"),
function (x, i, j, ..., value)
callGeneric(x=x, i=i, j=j, value = as.vector(value)))
setReplaceMethod("[", signature(x = "Matrix", i = "missing", j = "ANY",
value = "matrix"),
function (x, i, j, ..., value)
callGeneric(x=x, , j=j, value = c(value)))
setReplaceMethod("[", signature(x = "Matrix", i = "ANY", j = "missing",
value = "matrix"),
function (x, i, j, ..., value)
if(nargs() == 3)
callGeneric(x=x, i=i, value = c(value))
else
callGeneric(x=x, i=i, , value = c(value)))
setReplaceMethod("[", signature(x = "Matrix", i = "ANY", j = "ANY",
value = "matrix"),
function (x, i, j, value)
callGeneric(x=x, i=i, j=j, value = c(value)))
## M [ <lMatrix> ] <- value; used notably for x = "CsparseMatrix" -------------------
.repl.i.lDMat <- function (x, i, j, ..., value)
{
## nA <- nargs()
## if(nA != 3) stop(gettextf("nargs() = %d should never happen; please report.", nA), domain=NA)
## else: nA == 3 i.e., M [ Lmat ] <- value
## x[i] <- value ; return(x)
`[<-`(x, i=which(as.vector(i)), value=value)
}
setReplaceMethod("[", signature(x = "Matrix", i = "ldenseMatrix", j = "missing",
value = "replValue"), .repl.i.lDMat)
setReplaceMethod("[", signature(x = "Matrix", i = "ndenseMatrix", j = "missing",
value = "replValue"), .repl.i.lDMat)
.repl.i.lSMat <- function (x, i, j, ..., value)
{
## nA <- nargs()
## if(nA != 3) stop(gettextf("nargs() = %d should never happen; please report.", nA), domain=NA)
## else: nA == 3 i.e., M [ Lmat ] <- value
## x[i] <- value ; return(x)
`[<-`(x, i=which(as(i, "sparseVector")), value=value)
}
setReplaceMethod("[", signature(x = "Matrix", i = "lsparseMatrix", j = "missing",
value = "replValue"), .repl.i.lSMat)
setReplaceMethod("[", signature(x = "Matrix", i = "nsparseMatrix", j = "missing",
value = "replValue"), .repl.i.lSMat)
## (ANY,ANY,ANY) is used when no `real method' is implemented :
setReplaceMethod("[", signature(x = "Matrix", i = "ANY", j = "ANY",
value = "ANY"),
function (x, i, j, value) {
if(!is.atomic(value))
stop(gettextf(
"RHS 'value' (class %s) matches 'ANY', but must match matrix class %s",
class(value), class(x)), domain=NA)
else stop("not-yet-implemented 'Matrix[<-' method")
})
|