1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
  
     | 
    
      #### "TsparseMatrix" : Virtual class of sparse matrices in triplet-format
## more efficient than going via Csparse:
setAs("matrix", "TsparseMatrix",
      function(from)
      if(is.numeric(from)) mat2dgT(from)
      else if(is.logical(from)) as(Matrix(from, sparse=TRUE), "TsparseMatrix")
      else stop("not-yet-implemented coercion to \"TsparseMatrix\""))
setAs("numeric", "TsparseMatrix",
      function(from) as(as.matrix(from), "TsparseMatrix"))
setAs("TsparseMatrix", "matrix",
      function(from) .Call(dgTMatrix_to_matrix, as(from, "dgTMatrix")))
## in ../src/Tsparse.c :  |-> cholmod_T -> cholmod_C -> chm_sparse_to_SEXP
## adjusted for triangular matrices not represented in cholmod
.T.2.C <- function(from) .Call(Tsparse_to_Csparse, from, ##
			       is(from, "triangularMatrix"))
## fast, exported for power users
.T2Cmat <- function(from, isTri = is(from, "triangularMatrix"))
    .Call(Tsparse_to_Csparse, from, isTri)
setAs("TsparseMatrix", "CsparseMatrix", .T.2.C)
.T.2.n <- function(from) {
    ## No: coercing to n(sparse)Matrix gives the "full" pattern including 0's
    ## if(any(is0(from@x))) ## 0 or FALSE -- the following should have drop0Tsp(.)
    ##	from <- as(drop0(from), "TsparseMatrix")
    if(is(from, "triangularMatrix")) # i.e. ?tTMatrix
	new("ntTMatrix", i = from@i, j = from@j,
	    uplo = from@uplo, diag = from@diag,
	    Dim = from@Dim, Dimnames = from@Dimnames)
    else if(is(from, "symmetricMatrix")) # i.e. ?sTMatrix
	new("nsTMatrix", i = from@i, j = from@j, uplo = from@uplo,
	    Dim = from@Dim, Dimnames = from@Dimnames)
    else
	new("ngTMatrix", i = from@i, j = from@j,
	    Dim = from@Dim, Dimnames = from@Dimnames)
}
setAs("TsparseMatrix", "nsparseMatrix", .T.2.n)
setAs("TsparseMatrix", "nMatrix", .T.2.n)
.T.2.l <- function(from) {
    cld <- getClassDef(class(from))
    xx <- if(extends(cld, "nMatrix"))
	rep.int(TRUE, length(from@i)) else as.logical(from@x)
    if(extends(cld, "triangularMatrix")) # i.e. ?tTMatrix
	new("ltTMatrix", i = from@i, j = from@j, x = xx,
	    uplo = from@uplo, diag = from@diag,
	    Dim = from@Dim, Dimnames = from@Dimnames)
    else if(extends(cld, "symmetricMatrix")) # i.e. ?sTMatrix
	new("lsTMatrix", i = from@i, j = from@j, x = xx, uplo = from@uplo,
	    Dim = from@Dim, Dimnames = from@Dimnames)
    else
	new("lgTMatrix", i = from@i, j = from@j, x = xx,
	    Dim = from@Dim, Dimnames = from@Dimnames)
}
setAs("TsparseMatrix", "lsparseMatrix", .T.2.l)
setAs("TsparseMatrix", "lMatrix", .T.2.l)
## Special cases   ("d", "l", "n")  %o%  ("g", "s", "t") :
## used e.g. in triu()
setAs("dgTMatrix", "dgCMatrix",
      function(from) .Call(Tsparse_to_Csparse, from, FALSE))
setAs("dsTMatrix", "dsCMatrix",
      function(from) .Call(Tsparse_to_Csparse, from, FALSE))
setAs("dtTMatrix", "dtCMatrix",
      function(from) .Call(Tsparse_to_Csparse, from, TRUE))
setAs("lgTMatrix", "lgCMatrix",
      function(from) .Call(Tsparse_to_Csparse, from, FALSE))
setAs("lsTMatrix", "lsCMatrix",
      function(from) .Call(Tsparse_to_Csparse, from, FALSE))
setAs("ltTMatrix", "ltCMatrix",
      function(from) .Call(Tsparse_to_Csparse, from, TRUE))
setAs("ngTMatrix", "ngCMatrix",
      function(from) .Call(Tsparse_to_Csparse, from, FALSE))
setAs("nsTMatrix", "nsCMatrix",
      function(from) .Call(Tsparse_to_Csparse, from, FALSE))
setAs("ntTMatrix", "ntCMatrix",
      function(from) .Call(Tsparse_to_Csparse, from, TRUE))
### "[" :
### -----
## Test for numeric/logical/character
## method-*internally* ; this is not strictly OO, but allows to use
## the following utility and hence much more compact code.
## Otherwise have to write methods for all possible combinations of
##  (i , j) \in
##  (numeric, logical, character, missing) x (numeric, log., char., miss.)
##' a simplified "subset" of  intI() below
int2i <- function(i, n) {
    if(any(i < 0L)) {
	if(any(i > 0L))
	    stop("you cannot mix negative and positive indices")
	seq_len(n)[i]
    } else {
	if(length(i) && max(i, na.rm=TRUE) > n)
	    stop(gettextf("index larger than maximal %d", n), domain=NA)
	if(any(z <- i == 0)) i <- i[!z]
	i
    }
}
intI <- function(i, n, dn, give.dn = TRUE)
{
    ## Purpose: translate numeric | logical | character index
    ##		into 0-based integer
    ## ----------------------------------------------------------------------
    ## Arguments: i: index vector (numeric | logical | character)
    ##		  n: array extent		    { ==  dim(.) [margin] }
    ##		 dn: character col/rownames or NULL { == dimnames(.)[[margin]] }
    ## ----------------------------------------------------------------------
    ## Author: Martin Maechler, Date: 23 Apr 2007
    has.dn <- !is.null.DN(dn)
    DN <- has.dn && give.dn
    if(is.numeric(i) || is(i, "numeric")) { # inherits(<integer>, "numeric") is FALSE
	storage.mode(i) <- "integer"
	if(anyNA(i)) stop("'NA' indices are not (yet?) supported for sparse Matrices")
	if(any(i < 0L)) {
	    if(any(i > 0L))
		stop("you cannot mix negative and positive indices")
	    i0 <- (0:(n - 1L))[i]
	} else {
	    if(length(i) && max(i, na.rm=TRUE) > n) # base has "subscript out of bounds":
		stop(gettextf("index larger than maximal %d", n), domain=NA)
	    if(any(z <- i == 0)) i <- i[!z]
	    i0 <- i - 1L		# transform to 0-indexing
	}
	if(DN) dn <- dn[i]
    }
    else if (is.logical(i) || inherits(i, "logical")) {
	if(length(i) > n)
	    stop(gettextf("logical subscript too long (%d, should be %d)",
			  length(i), n), domain=NA)
	if(anyNA(i)) stop("'NA' indices are not (yet?) supported for sparse Matrices")
	i0 <- (0:(n - 1L))[i]
	if(DN) dn <- dn[i]
    } else { ## character
	if(!has.dn)
	    stop("no 'dimnames[[.]]': cannot use character indexing")
	i0 <- match(i, dn)
	if(anyNA(i0)) stop("invalid character indexing")
	if(DN) dn <- dn[i0]
	i0 <- i0 - 1L
    }
    if(!give.dn) i0 else list(i0 = i0, dn = dn)
} ## {intI}
.ind.prep <- function(xi, intIlist, iDup = duplicated(i0), anyDup = any(iDup))
{
    ## Purpose: do the ``common things'' for "*gTMatrix" indexing for 1 dim.
    ##		and return match(.,.) + li = length of corresponding dimension
    ##
    ## xi = "x@i" ; intIlist = intI(i, dim(x)[margin], ....)
    i0 <- intIlist$i0
    stopifnot(is.numeric(i0))# cheap fast check (i0 may have length 0 !)
    m <- match(xi, i0, nomatch=0)
    if(anyDup) { # assuming   anyDup <- any(iDup <- duplicated(i0))
	## i0i: where in (non-duplicated) i0 are the duplicated ones
	i0i <- match(i0[iDup], i0)
	i.x <- which(iDup) - 1L
	jm <- lapply(i0i, function(.) which(. == m))
    }
    c(list(m = m, li = length(i0),
	   i0 = i0, anyDup = anyDup, dn = intIlist$dn),
      ## actually,  iDup  is rarely needed in calling code
      if(anyDup) list(iDup = iDup, i0i = i0i, i.x = i.x,
		      jm = unlist(jm), i.xtra = rep.int(i.x, lengths(jm))))
} ## {.ind.prep}
##' <description>
##' Do the ``common things'' for "*gTMatrix" sub-assignment
##' for 1 dimension, 'margin' ,
##' <details>
##' @title Indexing Preparation
##' @param i "index"
##' @param margin in {1,2};
##' @param di = dim(x)	{ used when i is not character }
##' @param dn = dimnames(x)
##' @return match(.,.) + li = length of corresponding dimension
##' difference to .ind.prep(): use 1-indices; no match(xi,..), no dn at end
##' @author Martin Maechler
.ind.prep2 <- function(i, margin, di, dn)
{
    intI(i, n = di[margin], dn = dn[[margin]], give.dn = FALSE)
}
## Select rows
setMethod("[", signature(x = "TsparseMatrix", i = "index", j = "missing",
			 drop = "logical"),
	  function (x, i, j, ..., drop) { ## select rows
	      na <- nargs()
	      Matrix.msg("Tsp[i,m,l]: nargs()=", na, .M.level=2)
	      if(na == 4)
		  .as.Tsp(as(x,"CsparseMatrix")[i, , drop=drop], noCheck = !drop)
	      else if(na == 3) ## e.g. M[0] , M[TRUE],	M[1:2]
		  .M.vectorSub(x,i)
	      else ## should not happen
		  stop("Matrix-internal error in <TsparseM>[i,,d]; please report")
	  })
## Select columns
setMethod("[", signature(x = "TsparseMatrix", i = "missing", j = "index",
			 drop = "logical"),
	  function (x, i, j, ..., drop) { ## select columns
	      .as.Tsp(as(x,"CsparseMatrix")[, j, drop=drop], noCheck = !drop)
	  })
setMethod("[", signature(x = "TsparseMatrix",
			 i = "index", j = "index", drop = "logical"),
	  function (x, i, j, ..., drop)
	  .as.Tsp(as(x,"CsparseMatrix")[i, j, drop=drop], noCheck = !drop))
## This is "just for now" -- Thinking of *not* doing this in the future
.as.Tsp <- function(x, noCheck)
    if(noCheck || is(x,"sparseMatrix")) as(x, "TsparseMatrix") else x
## FIXME: Learn from .TM... below or rather  .M.sub.i.2col(.) in ./Matrix.R
## ------ the following should be much more efficient than the
##  subset.ij() based ./Matrix.R code :
if(FALSE)
## A[ ij ]  where ij is (i,j) 2-column matrix :
setMethod("[", signature(x = "TsparseMatrix",
			 i = "matrix", j = "missing"),# drop="ANY"
	  function (x, i, j, ..., drop)
      {
	  di <- dim(x)
	  dn <- dimnames(x)
	  ## TODO check	 i (= 2-column matrix of indices) ---
	  ##	  as in	 .M.sub.i.2col() in ./Matrix.R
	  j <- i[,2]
	  i <- i[,1]
	  if(is(x, "symmetricMatrix")) {
	      isSym <- isTRUE(all(i == j))# work for i,j NA
	      if(!isSym)
		  x <- as(x, paste0(.M.kind(x), "gTMatrix"))
	  } else isSym <- FALSE
	  if(isSym) {
	      offD <- x@i != x@j
	      ip1 <- .ind.prep(c(x@i,x@j[offD]), intI(i, n= di[1], dn=dn[[1]]))
	      ip2 <- .ind.prep(c(x@j,x@i[offD]), intI(j, n= di[2], dn=dn[[2]]))
	  } else {
	      ip1 <- .ind.prep(x@i, intI(i, n = di[1], dn = dn[[1]]))
	      ip2 <- .ind.prep(x@j, intI(j, n = di[2], dn = dn[[2]]))
	  }
	  stop("FIXME: NOT YET FINISHED IMPLEMENTATION")
	  ## The M[i_vec, j_vec] had -- we need "its diagonal" :
	  sel <- ip1$m	&  ip2$m
	  if(isSym) { # only those corresponding to upper/lower triangle
	      sel <- sel &
	      (if(x@uplo == "U") ip1$m <= ip2$m else ip2$m <= ip1$m)
	  }
	  x@i <- ip1$m[sel] - 1L
	  x@j <- ip2$m[sel] - 1L
	  if (!is(x, "nsparseMatrix"))
	      x@x <- c(x@x, if(isSym) x@x[offD])[sel]
	  if (drop && any(nd == 1)) drop(as(x,"matrix")) else x
      })
###========= Sub-Assignment aka *Replace*Methods =========================
### FIXME: make this `very fast'  for the very very common case of
### -----   M[i,j] <- v  with   i,j = length-1-numeric;  v= length-1 number
###                            *and* M[i,j] == 0 previously
##
## FIXME(2): keep in sync with replCmat() in ./Csparse.R
## FIXME(3): It's terribly slow when used e.g. from diag(M[,-1]) <- value
## -----     which has "workhorse"   M[,-1] <- <dsparseVector>
##
## workhorse for "[<-" :
replTmat <- function (x, i, j, ..., value)
{
## NOTE:  need '...', i.e., exact signature such that setMethod()
##	  does not use .local() such that nargs() will work correctly:
    di <- dim(x)
    dn <- dimnames(x)
    iMi <- missing(i)
    jMi <- missing(j)
    ## "FIXME": could pass this (and much ? more) when this function would not *be* a
    ## method but be *called* from methods
    clDv <- getClassDef(class(value))
    spV <- extends(clDv, "sparseVector")
    ## own version of all0() that works both for sparseVector and atomic vectors:
    .all0 <- function(v) if(spV) length(v@i) == 0 else all0(v)
    delayedAssign("value.not.logical",
                  !(if(spV) {
                      extends1of(clDv, "lsparseVector", "nsparseVector")
                  } else {
                      is.logical(value) || is.logical(as.vector(value))
                  }))
    na <- nargs()
    if(na == 3) { ## i = vector indexing  M[i] <- v,  e.g.,  M[TRUE] <- v or M[] <- v !
	Matrix.msg("diagnosing replTmat(x,i,j,v): nargs()= 3; ",
		   if(iMi | jMi) sprintf("missing (i,j) = (%d,%d)", iMi,jMi))
	if(iMi) stop("internal bug: missing 'i' in replTmat(): please report")
	if(is.character(i))
	    stop("[ <character> ] indexing not allowed: forgot a \",\" ?")
	if(is.matrix(i))
	    stop("internal bug: matrix 'i' in replTmat(): please report")
	## Now: have  M[i] <- v	 with vector logical or "integer" i :
	## Tmatrix maybe non-unique, have an entry split into a sum of several ones:
	if(!is(x,"generalMatrix")) {
	    cl <- class(x)
	    x <- as(x, paste0(.M.kind(x), "gTMatrix"))
	    Matrix.msg("'sub-optimal sparse 'x[i] <- v' assignment: Coercing class ",
		       cl," to ",class(x))
	}
	nr <- di[1]
	x.i <- .Call(m_encodeInd2, x@i, x@j, di=di, FALSE, FALSE)
	if(anyDuplicated(x.i)) { ## == if(anyDuplicatedT(x, di = di))
	    x <- uniqTsparse(x)
	    x.i <- .Call(m_encodeInd2, x@i, x@j, di=di, FALSE, FALSE)
	}
        n <- prod(di)
	i <- if(is.logical(i)) { # full-size logical indexing
	    if(n) {
                if(isTRUE(i)) # shortcut
                    0:(n-1)
                else {
                    if(length(i) < n) i <- rep_len(i, n)
                    (0:(n-1))[i] # -> 0-based index vector as well {maybe LARGE!}
                }
	    } else integer(0)
	} else {
	    ## also works with *negative* indices etc:
	    int2i(as.integer(i), n) - 1L ## 0-based indices [to match m_encodeInd2()]
	}
        clx <- class(x)
        clDx <- getClassDef(clx) # extends(), is() etc all use the class definition
        has.x <- "x" %in% slotNames(clDx) # === slotNames(x)
	if(!has.x && # <==> "n.TMatrix"
	   ((iNA <- any(ina <- is.na(value))) || value.not.logical)) {
            if(value.not.logical) value <- as.logical(value)
	    if(iNA) {
		value[ina] <- TRUE
		warning(
		    gettextf("x[.] <- val: x is %s, val not in {TRUE, FALSE} is coerced; NA |--> TRUE.",
			     dQuote(clx)), domain=NA)
	    }
	    else warning(
		    gettextf("x[.] <- val: x is %s, val not in {TRUE, FALSE} is coerced.",
			     dQuote(clx)), domain=NA)
	}
	## now have 0-based indices   x.i (entries) and	 i (new entries)
	## the simplest case:
	if(.all0(value)) { ## just drop the non-zero entries
	    if(!all(sel <- is.na(match(x.i, i)))) { ## non-zero there
		x@i <- x@i[sel]
		x@j <- x@j[sel]
		if(has.x)
		    x@x <- x@x[sel]
		if(.hasSlot(x, "factors") && length(x@factors)) # drop cashed ones
		    x@factors <- list()
	    }
	    return(x)
	}
	m <- length(i)
	if(length(value) != m) { ## use recycling rules
	    if(m %% length(value) != 0)
		warning("number of items to replace is not a multiple of replacement length")
	    value <- rep_len(value, m)
	}
        ## With duplicated entries i, only use the last ones!
        if(id <- anyDuplicated(i, fromLast=TRUE)) {
            i <- i[-id]
            value <- value[-id]
            if(any(id <- duplicated(i, fromLast=TRUE))) {
                nd <- -which(id)
                i <- i[nd]
                value <- value[nd]
            }
        }
	## matching existing non-zeros and new entries; isE := "is Existing"
	##  isE <- i %in% x.i;  mi <- {matching i's}
        isE <- !is.na(mi <- match(i, x.i))
        ## => mi[isE] entries in (i,j,x) to be set to new value[]s
	## 1) Change the matching non-zero entries
	if(has.x)
	    x@x[mi[isE]] <- as(value[isE], class(x@x))
        else if(any0(value[isE])) { ## "n.TMatrix" : remove (i,j) where value is FALSE
            get0 <- !value[isE] ## x[i,j] is TRUE, should become FALSE
            i.rm <- - mi[isE][get0]
            x@i <- x@i[i.rm]
            x@j <- x@j[i.rm]
        }
	## 2) add the new non-zero entries
	i <- i[!isE]
	xv <- value[!isE]
	## --- Be be efficient when  'value' is sparse :
	if(length(notE <- which(isN0(xv)))) { # isN0(): non-0's; NAs counted too
	    xv <- xv[notE]
	    i <- i[notE]
	    if(has.x) {
		x@x <- c(x@x, as(xv, class(x@x)))
	    } else { # n.TMatrix : assign (i,j) only where value is TRUE:
		i <- i[xv]
	    }
	    x@i <- c(x@i, i %%  nr)
	    x@j <- c(x@j, i %/% nr)
	}
	if(.hasSlot(x, "factors") && length(x@factors)) # drop cashed ones
	    x@factors <- list()
	return(x)
    } ## {nargs = 3;  x[ii] <- value }
    ## nargs() == 4 :  x[i,j] <- value
    ## --------------------------------------------------------------------------
    lenV <- length(value)
    Matrix.msg(".. replTmat(x,i,j,v): nargs()= 4; cl.(x)=",
	       class(x),"; len.(value)=", lenV,"; ",
	       if(iMi | jMi) sprintf("missing (i,j) = (%d,%d)", iMi,jMi),
	       .M.level = 2)# level 1  gives too many messages
    ## FIXME: use  'abIndex' or a better algorithm, e.g.  if(iMi)
    i1 <- if(iMi) 0:(di[1] - 1L) else .ind.prep2(i, 1, di, dn)
    i2 <- if(jMi) 0:(di[2] - 1L) else .ind.prep2(j, 2, di, dn)
    dind <- c(length(i1), length(i2)) # dimension of replacement region
    lenRepl <- prod(dind)
    if(lenV == 0) {
        if(lenRepl != 0)
            stop("nothing to replace with")
        else return(x)
    }
    ## else: lenV := length(value)	 is > 0
    if(lenRepl %% lenV != 0)
	stop("number of items to replace is not a multiple of replacement length")
    if(!spV && lenRepl > 2^16) { # (somewhat arbitrary cutoff)
	value <- as(value, "sparseVector")# so that subsequent rep(.) are fast
        spV <- TRUE
    }
    ## Now deal with duplicated / repeated indices: "last one wins"
    if(!iMi && any(dup <- duplicated(i1, fromLast = TRUE))) { ## duplicated rows
        keep <- !dup
        i1 <- i1[keep]
        ## keep is "internally" recycled below {and that's important: it is dense!}
	lenV <- length(value <- rep_len(value, lenRepl)[keep])
        dind[1] <- length(i1)
        lenRepl <- prod(dind)
    }
    if(!jMi && any(dup <- duplicated(i2, fromLast = TRUE))) { ## duplicated columns
        iDup <- which(dup)
        ## The following is correct, but  rep(keep,..) can be *HUGE*
        ## keep <- !dup
        ## i2 <- i2[keep]
	## lenV <- length(value <- rep_len(value, lenRepl)[rep(keep, each=dind[1])])
        ## solution: sv[-i] is efficient for sparseVector:
        i2 <- i2[- iDup]
        nr <- dind[1]
        iDup <- rep((iDup - 1)*nr, each=nr) + seq_len(nr)
	lenV <- length(value <- rep_len(value, lenRepl)[-iDup])
        dind[2] <- length(i2)
        lenRepl <- prod(dind)
    }
    clx <- class(x)
    clDx <- getClassDef(clx) # extends() , is() etc all use the class definition
    stopifnot(extends(clDx, "TsparseMatrix"))
    ## Tmatrix maybe non-unique, have an entry split into a sum of several ones:
    if(anyDuplicatedT(x, di = di))
	x <- uniqTsparse(x)
    toGeneral <- r.sym <- FALSE
    if(extends(clDx, "symmetricMatrix")) {
	## using array() for large dind is a disaster...
	mkArray <- if(spV) # TODO: room for improvement
	    function(v, dim) spV2M(v, dim[1],dim[2]) else array
	r.sym <-
	    (dind[1] == dind[2] && all(i1 == i2) &&
	     (lenRepl == 1 || lenV == 1 ||
	      isSymmetric(mkArray(value, dim=dind))))
	if(r.sym) { ## result is *still* symmetric --> keep symmetry!
	    xU <- x@uplo == "U"
            # later, we will consider only those indices above / below diagonal:
	}
	else toGeneral <- TRUE
    } else if(extends(clDx, "triangularMatrix")) {
        xU <- x@uplo == "U"
	r.tri <- ((any(dind == 1) || dind[1] == dind[2]) &&
		  if(xU) max(i1) <= min(i2) else max(i2) <= min(i1))
	if(r.tri) { ## result is *still* triangular
            if(any(i1 == i2)) # diagonal will be changed
                x <- diagU2N(x) # keeps class (!)
	}
	else toGeneral <- TRUE
    }
    if(toGeneral) { # go to "generalMatrix" and continue
	if((.w <- isTRUE(getOption("Matrix.warn"))) ||
	   (!is.null(v <- getOption("Matrix.verbose")) && v >= 1))
	    (if(.w) warning else message)(
	     "M[i,j] <- v :  coercing symmetric M[] into non-symmetric")
        x <- as(x, paste0(.M.kind(x), "gTMatrix"))
        clDx <- getClassDef(clx <- class(x))
    }
    ## TODO (efficiency): replace  'sel' by 'which(sel)'
    get.ind.sel <- function(ii,ij)
	(match(x@i, ii, nomatch = 0L) & match(x@j, ij, nomatch = 0L))
    ## sel[k] := TRUE iff k-th non-zero entry (typically x@x[k]) is to be replaced
    sel <- get.ind.sel(i1,i2)
    has.x <- "x" %in% slotNames(clDx) # === slotNames(x)
    ## the simplest case: for all Tsparse, even for i or j missing
    if(.all0(value)) { ## just drop the non-zero entries
	if(any(sel)) { ## non-zero there
	    x@i <- x@i[!sel]
	    x@j <- x@j[!sel]
            if(has.x)
		x@x <- x@x[!sel]
	    if(.hasSlot(x, "factors") && length(x@factors)) # drop cashed ones
		x@factors <- list()
	}
	return(x)
    }
    ## else --  some( value != 0 ) --
    if(lenV > lenRepl)
        stop("too many replacement values")
    ## now have  lenV <= lenRepl
    if(!has.x && # <==> "n.TMatrix"
       ((iNA <- anyNA(value)) || value.not.logical))
	warning(if(iNA)
		gettextf("x[.,.] <- val: x is %s, val not in {TRUE, FALSE} is coerced NA |--> TRUE.",
			 dQuote(clx))
		else
		gettextf("x[.,.] <- val: x is %s, val not in {TRUE, FALSE} is coerced.",
			 dQuote(clx)), domain=NA)
    ## another simple, typical case:
    if(lenRepl == 1) {
        if(spV && has.x) value <- as(value, "vector")
        if(any(sel)) { ## non-zero there
            if(has.x)
                x@x[sel] <- value
        } else { ## new non-zero
            x@i <- c(x@i, i1)
            x@j <- c(x@j, i2)
            if(has.x)
                x@x <- c(x@x, value)
        }
	if(.hasSlot(x, "factors") && length(x@factors)) # drop cashed ones
	    x@factors <- list()
        return(x)
    }
### Otherwise, for large lenRepl, we get into trouble below
    if(lenRepl > 2^20) { # (somewhat arbitrary cutoff)
## FIXME: just for testing !!
## if(identical(Sys.getenv("USER"),"maechler")
##    if(lenRepl > 2) { # __________ ___ JUST for testing! _______________
	if(nonTRUEoption("Matrix.quiet"))
	    message(gettextf("x[.,.] <- val : x being coerced from Tsparse* to CsparseMatrix"),
		    domain = NA)
	return(replCmat4(as(x,"CsparseMatrix"), i1, i2, iMi=iMi, jMi=jMi,
			 value = if(spV) value else as(value, "sparseVector"),
			 spV = TRUE))
    }
    ##     if(r.sym) # value already adjusted, see above
    ##        lenRepl <- length(value) # shorter (since only "triangle")
    if(!r.sym && lenV < lenRepl)
	value <- rep_len(value, lenRepl)
    ## now:  length(value) == lenRepl  {but value is sparseVector if it's "long" !}
    ## value[1:lenRepl]:  which are structural 0 now, which not?
    ## v0 <- is0(value)
    ## - replaced by using isN0(as.vector(.)) on a typical small subset value[.]
    ## --> more efficient for sparse 'value' & large 'lenRepl' :
    ## FIXME [= FIXME(3) above]:
    ## ----- The use of  seq_len(lenRepl) below is *still* inefficient
    ##   (or impossible e.g. when lenRepl == 50000^2)
    ##       and the  vN0 <- isN0(as.vector(value[iI0]))  is even more ...
    ## One idea: use "abIndex", (a very efficient storage of index vectors which are
    ## a concatenation of only a few arithmetic seq()ences
    use.abI <- isTRUE(getOption("Matrix.use.abIndex"))
    ## This 'use.abI' should later depend on the *dimension* of things !
    ##>>> But for that, we need to implement the following abIndex - "methods":
    ##>>>   <abI>[-n],  <value>[ <abIndex> ] , intersect(<abI>, <abI>)
    ## and for intersect(): typically sort(), unique() & similar
    iI0 <- if(use.abI) abIseq1(1L, lenRepl) else seq_len(lenRepl)
    if(any(sel)) {
	## the 0-based indices of non-zero entries -- WRT to submatrix
	iN0 <- 1L + .Call(m_encodeInd2,
			  match(x@i[sel], i1),
			  match(x@j[sel], i2),
			  di = dind, orig1=TRUE, FALSE)
	## 1a) replace those that are already non-zero with non-0 values
	vN0 <- isN0(value[iN0])
	if(any(vN0) && has.x) {
	    vv0 <- which(vN0)
	    x@x[sel][vv0] <- as.vector(value[iN0[vv0]])
	}
	## 1b) replace non-zeros with 0 --> drop entries
	if(!all(vN0)) { ##-> ii will not be empty
	    ii <- which(sel)[which(!vN0)] # <- vN0 may be sparseVector
	    if(has.x)
		x@x <- x@x[-ii]
	    x@i <- x@i[-ii]
	    x@j <- x@j[-ii]
	}
	iI0 <- if(length(iN0) < lenRepl) iI0[-iN0] ## else NULL
                                        # == complementInd(non0, dind)
    }
    if(length(iI0)) {
        if(r.sym) {
	    ## should only set new entries above / below diagonal, i.e.,
            ## subset iI0 such as to contain only  above/below ..
	    iSel <-
		if(use.abI) abIindTri(dind[1], upper=xU, diag=TRUE)
		else	       indTri(dind[1], upper=xU, diag=TRUE)
	    ## select also the corresponding triangle of values
### TODO for "abIndex" -- note we KNOW that both  iI0 and iSel
### are strictly increasing :
	    iI0 <- intersect(iI0, iSel)
        }
        full <- length(iI0) == lenRepl
	vN0 <-
	    if(spV) ## "sparseVector"
		(if(full) value else value[iI0])@i
	    else which(isN0(if(full) value else value[iI0]))
	if(length(vN0)) {
	    ## 2) add those that were structural 0 (where value != 0)
	    iIN0 <- if(full) vN0 else iI0[vN0]
	    ij0 <- decodeInd(iIN0 - 1L, nr = dind[1])
	    x@i <- c(x@i, i1[ij0[,1] + 1L])
	    x@j <- c(x@j, i2[ij0[,2] + 1L])
	    if(has.x)
		x@x <- c(x@x, as.vector(value[iIN0]))
	}
    }
    if(.hasSlot(x, "factors") && length(x@factors)) # drop cashed ones
	x@factors <- list()
    x
} ## end{replTmat}
## A[ ij ] <- value,  where ij is a matrix; typically (i,j) 2-column matrix :
## ----------------   ./Matrix.R has a general cheap method
## This one should become as fast as possible -- is also used from Csparse.R --
.TM.repl.i.mat <- function (x, i, j, ..., value)
{
    nA <- nargs()
    if(nA != 3)
	stop(gettextf("nargs() = %d should never happen; please report.", nA), domain=NA)
    ## else: nA == 3  i.e.,  M [ cbind(ii,jj) ] <- value or M [ Lmat ] <- value
    if(is.logical(i)) {
	Matrix.msg(".TM.repl.i.mat(): drop 'matrix' case ...", .M.level=2)
	## c(i) : drop "matrix" to logical vector
	x[as.vector(i)] <- value
	return(x)
    } else if(extends1of(cli <- getClassDef(class(i)), c("lMatrix", "nMatrix"))) {
	Matrix.msg(".TM.repl.i.mat(): \"lMatrix\" case ...", .M.level=2)
	i <- which(as(i, if(extends(cli, "sparseMatrix")) "sparseVector" else "vector"))
	## x[i] <- value ; return(x)
	return(`[<-`(x,i, value=value))
    } else if(extends(cli, "Matrix")) { # "dMatrix" or "iMatrix"
	if(ncol(i) != 2)
	    stop("such indexing must be by logical or 2-column numeric matrix")
	i <- as(i, "matrix")
    } else if(!is.numeric(i) || ncol(i) != 2)
	stop("such indexing must be by logical or 2-column numeric matrix")
    if(!is.integer(i)) storage.mode(i) <- "integer"
    if(any(i < 0))
	stop("negative values are not allowed in a matrix subscript")
    if(anyNA(i))
	stop("NAs are not allowed in subscripted assignments")
    if(any(i0 <- (i == 0))) # remove them
	i <- i[ - which(i0, arr.ind = TRUE)[,"row"], ]
    if(length(attributes(i)) > 1) # more than just 'dim'; simplify: will use identical
	attributes(i) <- list(dim = dim(i))
    ## now have integer i >= 1
    m <- nrow(i)
    if(m == 0)
	return(x)
    if(length(value) == 0)
	stop("nothing to replace with")
    ## mod.x <- .type.kind[.M.kind(x)]
    if(length(value) != m) { ## use recycling rules
	if(m %% length(value) != 0)
	    warning("number of items to replace is not a multiple of replacement length")
	value <- rep_len(value, m)
    }
    clx <- class(x)
    clDx <- getClassDef(clx) # extends() , is() etc all use the class definition
    stopifnot(extends(clDx, "TsparseMatrix"))
    di <- dim(x)
    nr <- di[1]
    nc <- di[2]
    i1 <- i[,1]
    i2 <- i[,2]
    if(any(i1 > nr)) stop(gettextf("row indices must be <= nrow(.) which is %d", nr), domain=NA)
    if(any(i2 > nc)) stop(gettextf("column indices must be <= ncol(.) which is %d", nc), domain=NA)
    ## Tmatrix maybe non-unique, have an entry split into a sum of several ones:
    if(anyDuplicatedT(x, di = di))
	x <- uniqTsparse(x)
    toGeneral <- FALSE
    isN <- extends(clDx, "nMatrix")
    if(r.sym <- extends(clDx, "symmetricMatrix")) {
	## Tests to see if the assignments are symmetric as well
	r.sym <- all(i1 == i2)
	if(!r.sym) { # do have *some* Lower or Upper entries
	    iL <- i1 > i2
	    iU <- i1 < i2
	    r.sym <- sum(iL) == sum(iU) # same number
	    if(r.sym) {
		iLord <- order(i1[iL], i2[iL])
		iUord <- order(i2[iU], i1[iU]) # row <-> col. !
		r.sym <- {
		    identical(i[iL,    , drop=FALSE][iLord,],
			      i[iU, 2:1, drop=FALSE][iUord,]) &&
		    all(value[iL][iLord] ==
			value[iU][iUord])
		}
	    }
	}
	if(r.sym) { ## result is *still* symmetric --> keep symmetry!
	    ## now consider only those indices above / below diagonal:
	    useI <- if(x@uplo == "U") i1 <= i2 else i2 <= i1
	    i <- i[useI, , drop=FALSE]
	    value <- value[useI]
	}
	else toGeneral <- TRUE
    }
    else if(extends(clDx, "triangularMatrix")) {
	r.tri <- all(if(x@uplo == "U") i1 <= i2 else i2 <= i1)
	if(r.tri) { ## result is *still* triangular
	    if(any(ieq <- i1 == i2)) { # diagonal will be changed
		if(x@diag == "U" && all(ieq) &&
		   all(value == if(isN) TRUE else as1(x@x)))
		    ## only diagonal values are set to 1 -- i.e. unchanged
		    return(x)
		x <- diagU2N(x) # keeps class (!)
	    }
	}
	else toGeneral <- TRUE
    }
    if(toGeneral) { # go to "generalMatrix" and continue
	if((.w <- isTRUE(getOption("Matrix.warn"))) || isTRUE(getOption("Matrix.verbose")))
	    (if(.w) warning else message)(
	     "M[ij] <- v :  coercing symmetric M[] into non-symmetric")
	x <- as(x, paste0(.M.kind(x), "gTMatrix"))
	clDx <- getClassDef(clx <- class(x))
    }
    ii.v <- .Call(m_encodeInd, i, di, orig1=TRUE, checkBounds = TRUE)
    if(id <- anyDuplicated(ii.v, fromLast=TRUE)) {
        Matrix.msg("duplicate ij-entries in 'Matrix[ ij ] <- value'; using last",
                   .M.level = 1)
        ii.v  <- ii.v [-id]
	value <- value[-id]
        if(any(id <- duplicated(ii.v, fromLast=TRUE))) {
            nd <- -which(id)
            ii.v  <- ii.v [nd]
            value <- value[nd]
        }
    }
    ii.x <- .Call(m_encodeInd2, x@i, x@j, di, FALSE, FALSE)
    m1 <- match(ii.v, ii.x)
    i.repl <- !is.na(m1) # those that need to be *replaced*
    if(isN) { ## no 'x' slot
	isN <- all(value %in% c(FALSE, TRUE)) # will result remain  "nMatrix" ?
	if(!isN)
	    x <- as(x, paste0(if(extends(clDx, "lMatrix")) "l" else "d",
			      .sparse.prefixes[.M.shape(x)], "TMatrix"))
    }
    has.x <- !isN ## isN  <===> "remains pattern matrix" <===> has no 'x' slot
    if(any(i.repl)) { ## some to replace at matching (@i, @j)
	if(has.x)
	    x@x[m1[i.repl]] <- value[i.repl]
	else { # nMatrix ; eliminate entries that are set to FALSE; keep others
	    if(any(isF <- !value[i.repl]))  {
		ii <- m1[i.repl][isF]
		x@i <- x@i[ -ii]
		x@j <- x@j[ -ii]
	    }
	}
    }
    if(any(i.new <- !i.repl & isN0(value))) { ## some new entries
	i.j <- decodeInd(ii.v[i.new], nr)
	x@i <- c(x@i, i.j[,1])
	x@j <- c(x@j, i.j[,2])
	if(has.x)
	    x@x <- c(x@x, value[i.new])
    }
    if(.hasSlot(x, "factors") && length(x@factors)) # drop cashed ones
	x@factors <- list()
    x
} ## end{.TM.repl.i.mat}
setReplaceMethod("[", signature(x = "TsparseMatrix", i = "index", j = "missing",
				value = "replValue"),
		 replTmat)
setReplaceMethod("[", signature(x = "TsparseMatrix", i = "missing", j = "index",
				value = "replValue"),
		 replTmat)
setReplaceMethod("[", signature(x = "TsparseMatrix", i = "index", j = "index",
				value = "replValue"),
		 replTmat)
setReplaceMethod("[", signature(x = "TsparseMatrix", i = "matrix", j = "missing",
				value = "replValue"),
		 .TM.repl.i.mat)
setReplaceMethod("[", signature(x = "TsparseMatrix", i = "Matrix", j = "missing",
				value = "replValue"),
		 .TM.repl.i.mat)
### When the RHS 'value' is  a sparseVector, now can use  replTmat  as well
setReplaceMethod("[", signature(x = "TsparseMatrix", i = "missing", j = "index",
				value = "sparseVector"),
		 replTmat)
setReplaceMethod("[", signature(x = "TsparseMatrix", i = "index", j = "missing",
				value = "sparseVector"),
		 replTmat)
setReplaceMethod("[", signature(x = "TsparseMatrix", i = "index", j = "index",
				value = "sparseVector"),
		 replTmat)
setMethod("solve", signature(a = "TsparseMatrix", b = "ANY"),
	  function(a, b, ...) solve(as(a, "CsparseMatrix"), b))
setMethod("solve", signature(a = "TsparseMatrix", b = "missing"),
	  function(a, b, ...) solve(as(a, "CsparseMatrix")))
## Want tril(), triu(), band() --- just as "indexing" ---
## return a "close" class:
setMethod("tril", "TsparseMatrix",
	  function(x, k = 0, ...)
	  as(tril(.T.2.C(x), k = k, ...), "TsparseMatrix"))
setMethod("triu", "TsparseMatrix",
	  function(x, k = 0, ...)
	  as(triu(.T.2.C(x), k = k, ...), "TsparseMatrix"))
setMethod("band", "TsparseMatrix",
	  function(x, k1, k2, ...)
	  as(band(.T.2.C(x), k1 = k1, k2 = k2, ...), "TsparseMatrix"))
## For the "general" T ones (triangular & symmetric have special methods):
setMethod("t", signature(x = "TsparseMatrix"),
	  function(x) {
              cld <- getClassDef(class(x))
	      r <- new(cld)
	      r@i <- x@j
	      r@j <- x@i
	      if(any("x" == slotNames(cld)))
		  r@x <- x@x
	      r@Dim <- x@Dim[2:1]
	      r@Dimnames <- x@Dimnames[2:1]
	      r
      })
isDiagTsp <- function(object) {
    d <- dim(object)
    if(d[1] != d[2])
        FALSE
    else
        length(i <- object@i) == length(j <- object@j) && all(i == j)
}
setMethod("isDiagonal", signature(object = "TsparseMatrix"), isDiagTsp)
 
     |