1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
|
#### This is a "translation" of GNU octave's
#### ~/src/octave-3.2.4/scripts/linear-algebra/condest.m
#### and ~/src/octave-3.2.4/scripts/linear-algebra/onenormest.m
#### which have identical copyright and references (see below):
####
##__\begin{copyright clause}______________________________________________
## Copyright (C) 2007, 2008, 2009 Regents of the University of California
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <http://www.gnu.org/licenses/>.
## Code originally licensed under
##
## Copyright (c) 2007, Regents of the University of California
## All rights reserved.
##
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions
## are met:
##
## * Redistributions of source code must retain the above copyright
## notice, this list of conditions and the following disclaimer.
##
## * Redistributions in binary form must reproduce the above
## copyright notice, this list of conditions and the following
## disclaimer in the documentation and/or other materials provided
## with the distribution.
##
## * Neither the name of the University of California, Berkeley nor
## the names of its contributors may be used to endorse or promote
## products derived from this software without specific prior
## written permission.
##
## THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS''
## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
## TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
## PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS AND
## CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
## SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
## LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
## USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
## ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
## OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
## OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
## SUCH DAMAGE.
## Author: Jason Riedy <ejr@cs.berkeley.edu>
## Keywords: linear-algebra norm estimation
## Version: 0.2
##__\end{copyright clause}________________________________________________
condest <- function(A, t = min (n, 5), normA = norm(A, "1"),
silent = FALSE, quiet = TRUE)
{
## Octave has further optional args and "calling sequences"
## may be implement at a later time point
##
if(length(d <- dim(A)) != 2 || (n <- d[1]) != d[2])
stop("'A' must be a square matrix")
luA <- lu(A)
i.n <- seq_len(n)
isSparse <- is(A, "sparseMatrix")
if(isSparse) {
### FIXME: if A is not a Matrix, but already a "CHMfactor" as resulting from
### Cholesky() , then we can procede more efficiently , notably
### because of the solve(A, b, system = ".*") options !
## luA = "sparseLU": slots (L, U, p,q, Dim);
## expand(luA) == list(P, L, U, Q) <----> A = P' L U Q
## where P A == A[p +1,] and A Q' == A[, q +1]
## <==> A^(-1) x = Q' U^-1 L^-1 P x = Q'y
## and A^(-T) x =(Q' U^-1 L^-1 P)' x = P' L^-T U^-T Q x = P'z
q. <- q.i <- luA@q + 1L; q.i[q.i] <- i.n
p. <- p.i <- luA@p + 1L; p.i[p.i] <- i.n
## q.i := inv(q.) & p.i := inv(p.), the inverse permutations
Ut <- t(luA@U)
Lt <- t(luA@L)
f.solve <- function(x) solve(luA@U, solve(luA@L, x[p.,]))[q.i,]
f.solve_t <- function(x) solve(Lt, solve(Ut, x[q.,]))[p.i,]
##Oct [L, U, P, Pc] = lu (A);
##Oct solve = @(x) Pc' * (U \ (L \ (P * x)));
##Oct solve_t = @(x) P' * (L' \ (U' \ (Pc * x)));
} else {
## luA is "denseLU" :
e.A <- expand(luA) ## == list(L, U, P), where A = PLU
p. <- p.i <- luA@perm; p.i[p.i] <- i.n
## p.i := inv(p.), the inverse permutation
Ut <- t(e.A$U)
Lt <- t(e.A$L)
## A = PLU <--> A^{-1} x = U^-1 L^-1 P x
## A^{-T} x = (U^-1 L^-1 P)' x = P' L^-T U^-T x = P'z
f.solve <- function(x) solve(e.A$U, solve(e.A$L, x[p.,]))
f.solve_t <- function(x) solve(Lt, solve(Ut, x))[p.i,]
##Oct [L, U, P] = lu (A);
##Oct solve = @(x) U \ (L \ (P*x));
##Oct solve_t = @(x) P' * (L' \ (U' \ x));
}
n1.res <- ## onenormest (A^{-1}, t=t) -- of course,that's *NOT* what we want
onenormest (A.x = f.solve, At.x = f.solve_t,
t=t, n=n, quiet=quiet, silent=silent)
## [Ainv_norm, v, w] = onenormest (solve, solve_t, n, t);
w <- n1.res[["w"]]
list(est = normA * n1.res[["est"]],
v = w / sum(abs(w))) # sum(|w|) = norm(w, "1")
}
## %!demo
## %! N = 100;
## %! A = randn (N) + eye (N);
## %! condest (A)
## %! [L,U,P] = lu (A);
## %! condest (A, @(x) U\ (L\ (P*x)), @(x) P'*(L'\ (U'\x)))
## %! condest (@(x) A*x, @(x) A'*x, @(x) U\ (L\ (P*x)), @(x) P'*(L'\ (U'\x)), N)
## %! norm (inv (A), 1) * norm (A, 1)
### Yes, these test bounds are really loose. There's
### enough randomization to trigger odd cases with hilb().
## %!test
## %! N = 6;
## %! A = hilb (N);
## %! cA = condest (A);
## %! cA_test = norm (inv (A), 1) * norm (A, 1);
## %! assert (cA, cA_test, -2^-8);
## %!test
## %! N = 6;
## %! A = hilb (N);
## %! solve = @(x) A\x; solve_t = @(x) A'\x;
## %! cA = condest (A, solve, solve_t);
## %! cA_test = norm (inv (A), 1) * norm (A, 1);
## %! assert (cA, cA_test, -2^-8);
## %!test
## %! N = 6;
## %! A = hilb (N);
## %! apply = @(x) A*x; apply_t = @(x) A'*x;
## %! solve = @(x) A\x; solve_t = @(x) A'\x;
## %! cA = condest (apply, apply_t, solve, solve_t, N);
## %! cA_test = norm (inv (A), 1) * norm (A, 1);
## %! assert (cA, cA_test, -2^-6);
## %!test
## %! N = 12;
## %! A = hilb (N);
## %! [rcondA, v] = condest (A);
## %! x = A*v;
## %! assert (norm(x, inf), 0, eps);
##------------ onenormest ------------------------------------------
onenormest <- function(A, t = min(n, 5),
A.x, At.x, n,
silent = FALSE, quiet = silent,
iter.max = 10, eps = 4* .Machine$double.eps)
{
mi.A <- missing(A)
mi.A.x <- missing(A.x)
mi.At.x <- missing(At.x)
no.A.x <- mi.A.x || !is.function(A.x)
no.At.x <- mi.At.x || !is.function(At.x)
if(mi.A && (no.A.x || no.At.x))
stop("must either specify 'A' or the functions 'A.x' and 'At.x'")
if(!mi.A && (!mi.A.x || !mi.At.x))
warning("when 'A' is specified, 'A.x' and 'At.x' are disregarded")
if(mi.A) {
stopifnot(is.numeric(n), length(n) == 1, n == round(n), n >= 0)
}
else { ## using 'A'
if(length(d <- dim(A)) != 2 || (n <- d[1]) != d[2])
stop("'A' must be a square matrix")
rm(d)
}
stopifnot(is.numeric(t), length(t) == 1, t >= 1,
iter.max >= 1)
## Initial test vectors X.
X <- matrix(runif(n*t), n,t) # X = rand (n, t);
## scale X to have column sums == 1 :
X <- X / rep(colSums(X), each=n)
## Track if a vertex has been visited.
been_there <- logical(n) # zeros (n, 1);
I.t <- diag(nrow = t)
## To check if the estimate has increased.
est_old <- 0
## Normalized vector of signs.
S <- matrix(0, n, t)
for(iter in 1:(iter.max + 1)) {
Y <- if(mi.A) A.x(X) else A %*% X ## is n x t
## Find the initial estimate as the largest A*x.
## [est, imax] = max (sum (abs (Y), 1))
imax <- which.max(cY <- colSums(abs(Y)))
est <- cY[imax]
if (est > est_old || iter == 2)
w <- Y[, imax]
if (iter >= 2 && est < est_old) {
## No improvement, so stop.
est <- est_old
break
}
est_old <- est
S_old <- S
if (iter > iter.max) {
## Gone too far. Stop.
if(!silent) warning(gettextf("not converged in %d iterations",
iter.max), domain = NA)
break
}
S <- sign (Y) ## n x t
## Test if any of S are approximately parallel to previous S
## vectors or current S vectors. If everything is parallel,
## stop. Otherwise, replace any parallel vectors with
## rand{-1,+1}.
partest <- apply(abs(crossprod(S_old, S) - n) < eps*n,
2, any)
if (all(partest)) {
## All the current vectors are parallel to old vectors.
## We've hit a cycle, so stop.
if(!quiet) message("hit a cycle (1) -- stop iterations")
break
}
if (any(partest)) {
## Some vectors are parallel to old ones and are cycling,
## but not all of them. Replace the parallel vectors with
## rand{-1,+1}.
numpar <- sum (partest)
replacements <- matrix(sample(c(-1,1), n*numpar,replace=TRUE),
n, numpar)
S[,partest] <- replacements
}
## Now test for parallel vectors within S.
partest <- apply(crossprod(S) - I.t == n, 2, any)
if (any(partest)) {
numpar <- sum(partest)
replacements <- matrix(sample(c(-1,1), n*numpar,replace=TRUE),
n, numpar)
S[,partest] <- replacements
}
Z <- if(mi.A) At.x(S) else crossprod(A, S) ## -- n x t
## Now find the largest non-previously-visted index per vector.
## h = max(2, abs(Z)) ## -- n x t
h <- pmax.int(2, as(abs(Z),"matrix")); dim(h) <- dim(Z) ## -- n x t
## [mh, mhi] = max (h) : for each column h[,j]:
## mh[j] = max(h[,j]); mhi = argmax(..)
mhi <- apply(h, 2, which.max) ## mh <- h[cbind(mhi,1:t)]
if (iter >= 2 && all(mhi == imax)) {
## (mhi == imax) : in octave this is only true when it's for all()
## Hit a cycle, stop.
if(!quiet) message("hit a cycle (2) -- stop iterations")
break
}
## [h, ind] = sort (h, 'descend'):
r <- apply(h, 2, sort.int, decreasing=TRUE, index.return=TRUE) #-> list
h <- sapply(r, `[[`, "x")
ind <- sapply(r, `[[`, "ix") #-> n x t {each column = permutation of 1:n}
if (t > 1) {
firstind <- ind[1:t]
if (all (been_there[firstind])) {
## Visited all these before, so stop.
break
}
ind <- ind[!been_there[ind]] ##-> now ind is a simple vector
if(length(ind) < t) {
## There aren't enough new vectors, so we're practically
## in a cycle. Stop.
if(!quiet) message("not enough new vecs -- stop iterations")
break
}
}
## Visit the new indices.
X <- matrix(0, n, t)
X[cbind(ind[1:t], 1:t)] <- 1
## for(zz in 1:t) X[ind[zz],zz] <- 1
been_there [ind[1:t]] <- TRUE
} ## for(iter ...)
## The estimate est and vector w are set in the loop above. The
## vector v selects the imax column of A.
v <- integer(n)
v[imax] <- 1L
list(est=est, v=v, w=w, iter=iter)
}## {onenormest}
## %!demo
## %! N = 100;
## %! A = randn(N) + eye(N);
## %! [L,U,P] = lu(A);
## %! nm1inv = onenormest(@(x) U\(L\(P*x)), @(x) P'*(L'\(U'\x)), N, 30)
## %! norm(inv(A), 1)
## %!test
## %! N = 10;
## %! A = ones (N);
## %! [nm1, v1, w1] = onenormest (A);
## %! [nminf, vinf, winf] = onenormest (A', 6);
## %! assert (nm1, N, -2*eps);
## %! assert (nminf, N, -2*eps);
## %! assert (norm (w1, 1), nm1 * norm (v1, 1), -2*eps)
## %! assert (norm (winf, 1), nminf * norm (vinf, 1), -2*eps)
## %!test
## %! N = 10;
## %! A = ones (N);
## %! [nm1, v1, w1] = onenormest (@(x) A*x, @(x) A'*x, N, 3);
## %! [nminf, vinf, winf] = onenormest (@(x) A'*x, @(x) A*x, N, 3);
## %! assert (nm1, N, -2*eps);
## %! assert (nminf, N, -2*eps);
## %! assert (norm (w1, 1), nm1 * norm (v1, 1), -2*eps)
## %! assert (norm (winf, 1), nminf * norm (vinf, 1), -2*eps)
## %!test
## %! N = 5;
## %! A = hilb (N);
## %! [nm1, v1, w1] = onenormest (A);
## %! [nminf, vinf, winf] = onenormest (A', 6);
## %! assert (nm1, norm (A, 1), -2*eps);
## %! assert (nminf, norm (A, inf), -2*eps);
## %! assert (norm (w1, 1), nm1 * norm (v1, 1), -2*eps)
## %! assert (norm (winf, 1), nminf * norm (vinf, 1), -2*eps)
## ## Only likely to be within a factor of 10.
## %!test
## %! N = 100;
## %! A = rand (N);
## %! [nm1, v1, w1] = onenormest (A);
## %! [nminf, vinf, winf] = onenormest (A', 6);
## %! assert (nm1, norm (A, 1), -.1);
## %! assert (nminf, norm (A, inf), -.1);
## %! assert (norm (w1, 1), nm1 * norm (v1, 1), -2*eps)
## %! assert (norm (winf, 1), nminf * norm (vinf, 1), -2*eps)
|