File: ddenseMatrix.R

package info (click to toggle)
rmatrix 1.3-2-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 7,024 kB
  • sloc: ansic: 42,435; makefile: 330; sh: 180
file content (172 lines) | stat: -rw-r--r-- 5,867 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
### Define Methods that can be inherited for all subclasses

## This replaces many "d..Matrix" -> "dgeMatrix" ones
## >> but << needs all sub(sub(sub)) classes of "ddenseMatrix" listed
##   -----  in  ../src/Mutils.c

setAs("ddenseMatrix", "dgeMatrix", ..2dge)

setAs("ddenseMatrix", "matrix",
      function(from) as(..2dge(from), "matrix"))

## d(ouble) to l(ogical):
setAs("dgeMatrix", "lgeMatrix", function(from) d2l_Matrix(from, "dgeMatrix"))
setAs("dsyMatrix", "lsyMatrix", function(from) d2l_Matrix(from, "dsyMatrix"))
setAs("dspMatrix", "lspMatrix", function(from) d2l_Matrix(from, "dspMatrix"))
setAs("dtrMatrix", "ltrMatrix", function(from) d2l_Matrix(from, "dtrMatrix"))
setAs("dtpMatrix", "ltpMatrix", function(from) d2l_Matrix(from, "dtpMatrix"))

if(FALSE) ## FIXME, this fails for ("dtpMatrix" -> "CsparseMatrix") where .dense2C() works
setAs("ddenseMatrix", "CsparseMatrix",
      function(from) {
	  if (class(from) != "dgeMatrix") # don't lose symmetry/triangularity/...
	      as_Csparse(from)
	  else .Call(dense_to_Csparse, from)
      })

## special case
setAs("dgeMatrix", "dgCMatrix",
      function(from) .Call(dense_to_Csparse, from))

setMethod("as.numeric", "ddenseMatrix", function(x, ...) ..2dge(x)@x)

## -- see also ./Matrix.R  e.g., for a show() method

## These methods are the 'fallback' methods for all dense numeric
## matrices in that they simply coerce the ddenseMatrix to a
## dgeMatrix. Methods for special forms override these.

setMethod("norm", signature(x = "ddenseMatrix", type = "missing"),
	  function(x, type, ...) norm(..2dge(x)))

setMethod("norm", signature(x = "ddenseMatrix", type = "character"),
	  function(x, type, ...) norm(..2dge(x), type))

setMethod("rcond", signature(x = "ddenseMatrix", norm = "missing"),
	  function(x, norm, ...) rcond(..2dge(x), ...))

setMethod("rcond", signature(x = "ddenseMatrix", norm = "character"),
	  function(x, norm, ...) rcond(..2dge(x), norm, ...))

## Not really useful; now require *identical* class for result:
## setMethod("t", signature(x = "ddenseMatrix"),
## 	  function(x) callGeneric(..2dge(x)))

## "diag" --> specific methods for dge, dtr,dtp, dsy,dsp

setMethod("solve", signature(a = "ddenseMatrix", b = "missing"),
          function(a, b, ...) solve(..2dge(a)))

for(.b in c("Matrix","ANY")) ## << against ambiguity notes
setMethod("solve", signature(a = "ddenseMatrix", b = .b),
	  function(a, b, ...) solve(..2dge(a), b))
for(.b in c("matrix","numeric")) ## << against ambiguity notes
setMethod("solve", signature(a = "ddenseMatrix", b = .b),
	  function(a, b, ...) solve(..2dge(a), Matrix(b)))
rm(.b)

setMethod("lu", signature(x = "ddenseMatrix"),
	  function(x, ...)
	  .set.factors(x, "LU", lu(..2dge(x), ...)))

setMethod("chol", signature(x = "ddenseMatrix"), cholMat)

setMethod("determinant", signature(x = "ddenseMatrix", logarithm = "missing"),
	  function(x, logarithm, ...) determinant(..2dge(x)))

setMethod("determinant", signature(x = "ddenseMatrix", logarithm = "logical"),
	  function(x, logarithm, ...)
	  determinant(..2dge(x), logarithm))

## now done for "dMatrix":
## setMethod("expm", signature(x = "ddenseMatrix"),
##           function(x) callGeneric(..2dge(x)))


.trilDense <- function(x, k = 0, ...) {
    k <- as.integer(k[1])
    d <- dim(x)
    stopifnot(-d[1] <= k, k <= d[1]) # had k <= 0
    ## returns "lower triangular" if k <= 0 && sqr
    .Call(dense_band, x, -d[1], k)
}
## NB: have extra tril(), triu() methods for symmetric ["dsy" and "dsp"] and
##     for triangular ["dtr" and "dtp"]
setMethod("tril", "denseMatrix", .trilDense)
setMethod("tril",      "matrix", .trilDense)

.triuDense <- function(x, k = 0, ...) {
    k <- as.integer(k[1])
    d <- dim(x)
    stopifnot(-d[1] <= k, k <= d[1]) # had k >= 0
    ## returns "upper triangular" if k >= 0
    .Call(dense_band, x, k, d[2])
}
setMethod("triu", "denseMatrix", .triuDense)
setMethod("triu",      "matrix", .triuDense)

.bandDense <- function(x, k1, k2, ...) {
    k1 <- as.integer(k1[1])
    k2 <- as.integer(k2[1])
    dd <- dim(x)
    sqr <- dd[1] == dd[2]
    stopifnot(-dd[1] <= k1, k1 <= k2, k2 <= dd[2])
    r <- .Call(dense_band, x, k1, k2)
    if (sqr &&  k1 < 0 &&  k1 == -k2  && isSymmetric(x)) ## symmetric
	forceSymmetric(r)
    else
	r
}
setMethod("band", "denseMatrix", .bandDense)
setMethod("band",      "matrix", .bandDense)


setMethod("symmpart", signature(x = "ddenseMatrix"),
	  function(x) .Call(ddense_symmpart, x))
setMethod("skewpart", signature(x = "ddenseMatrix"),
	  function(x) .Call(ddense_skewpart, x))


setMethod("is.finite", signature(x = "dgeMatrix"),
	  function(x) {
	      if(all(ifin <- is.finite(x@x)))
		  allTrueMat(x)
	      else if(any(ifin)) {
		  r <- as(x, "lMatrix") #-> logical x-slot
		  r@x <- ifin
		  as(r, "nMatrix")
	      }
	      else is.na_nsp(x)
	  })

## TODO? -- rather methods for specific subclasses of ddenseMatrix
setMethod("is.finite", signature(x = "ddenseMatrix"),
	  function(x) {
	      if(all(ifin <- is.finite(x@x))) return(allTrueMat(x))
	      ## *NOT* dge, i.e., either triangular or symmetric
	      ## (possibly packed): has finite 0-triangle
	      cdx <- getClassDef(class(x))

	      r <- new(if(extends(cdx,"symmetricMatrix"))"nsyMatrix" else "ngeMatrix")
	      r@Dim <- (d <- x@Dim)
	      r@Dimnames <- x@Dimnames
	      isPacked <- (le <- prod(d)) > length(ifin)
	      r@x <- rep.int(TRUE, le)
	      iTr <- indTri(d[1], upper= x@uplo == "U", diag= TRUE)
	      if(isPacked) { ## x@x is "usable"
		  r@x[iTr] <- ifin
	      } else {
		  r@x[iTr] <- ifin[iTr]
	      }
	      r
	  })

setMethod("is.infinite", signature(x = "ddenseMatrix"),
	  function(x) {
	      if(any((isInf <- is.infinite(x@x)))) {
		  r <- as(x, "lMatrix")#-> logical x-slot; 0 |--> FALSE
		  r@x <- isInf
		  as(r, "nMatrix")# often sparse .. better way?
	      }
	      else is.na_nsp(x)
	  })