File: dgCMatrix.R

package info (click to toggle)
rmatrix 1.3-2-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 7,024 kB
  • sloc: ansic: 42,435; makefile: 330; sh: 180
file content (167 lines) | stat: -rw-r--r-- 5,839 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
#### Sparse Matrices in Compressed column-oriented format

### contains = "dsparseMatrix", "CsparseMatrix"

## Specific conversions, should they be necessary.  Better to convert as
## as(x, "TsparseMatrix") or as(x, "denseMatrix")

## Moved to ./Csparse.R :
## setAs("dgCMatrix", "dgTMatrix", ....
## setAs("dgCMatrix", "dgeMatrix", ....
## setAs("dgeMatrix", "dgCMatrix", ....

setAs("dgCMatrix", "ngCMatrix", function(from) .C2nC(from, FALSE))

## rather use Csparse* to lsparse* in ./lsparseMatrix.R ,
## but this is for "back-compatibility" (have had tests for it..):
setAs("dgCMatrix", "lgCMatrix",
      function(from) { ## FIXME use .Call() too!
	  r <- new("lgCMatrix")
	  r@x <- as.logical(from@x)
	  ## and copy the other slots
	  for(nm in c("i", "p", "Dim", "Dimnames"))
	      slot(r, nm) <- slot(from, nm)
	  r
      })

setMethod("image", "dgCMatrix", function(x, ...) image(as(x, "dgTMatrix"), ...))

## Group Methods, see ?Arith (e.g.)
## -----
##
## "Arith" is now in ./Ops.R
##
## "Math" and "Math2"  in ./Math.R



## "[<-" methods { setReplaceMethod()s }  are now in ./Csparse.R

## setMethod("writeHB", signature(obj = "dgCMatrix"),
## 	  function(obj, file, ...) {
## 	      .Deprecated("writeMM")
## 	      .Call(Matrix_writeHarwellBoeing, obj,
## 		    as.character(file), "DGC")
## 	  })

##-> ./colSums.R  for colSums,... rowMeans

setMethod("t", signature(x = "dgCMatrix"),
	  function(x) .Call(Csparse_transpose, x, FALSE),
	  valueClass = "dgCMatrix")

setMethod("determinant", signature(x = "dgCMatrix", logarithm = "logical"),
          detSparseLU) # using mkDet() --> ./Auxiliaries.R

setMethod("qr", signature(x = "dgCMatrix"),
	  function(x, tol = 1e-07, LAPACK = FALSE, keep.dimnames = TRUE,
                   verbose = !is.null(v <- getOption("Matrix.verbose")) && v >= 1)
	  .Call(dgCMatrix_QR, # -> cs_sqr() and cs_qr() >> ../src/dgCMatrix.c
		x, ## order =
                if(verbose) -1L else TRUE, keep.dimnames))

setMethod("qr", signature(x = "sparseMatrix"),
	  function(x, ...)
	  qr(as(as(as(x, "CsparseMatrix"), "dsparseMatrix"), "dgCMatrix"), ...))

LU.dgC <- function(x, errSing = TRUE, order = TRUE, tol = 1.0, keep.dimnames = TRUE, ...) {
    chk.s(..., which.call=-2)
    .Call(dgCMatrix_LU, x, order, tol, errSing, keep.dimnames) ## ../src/dgCMatrix.c
}
setMethod("lu", signature(x = "dgCMatrix"), LU.dgC)

setMethod("lu", signature(x = "sparseMatrix"),
	  function(x, ...)
	  .set.factors(x, "lu",
		       lu(as(as(as(x, "CsparseMatrix"), "dsparseMatrix"), "dgCMatrix"),
			  ...)))


.solve.dgC.lu <- function(a, b, tol = .Machine$double.eps) {
    ## @MM: see also solveSparse() in  ~/R/MM/Pkg-ex/Matrix/Doran-A.R
    lu.a <- LU.dgC(a)
    if(tol > 0) {
	rU <- range(abs(diag(lu.a@U)))
	if(rU[1] / rU[2] < tol)
	    stop(gettextf("LU computationally singular: ratio of extreme entries in |diag(U)| = %9.4g",
			  rU[1] / rU[2]),
		 domain=NA)
    }
    n <- dim(a)[1L] ## == dim(a)[2], as a[.,.] is square matrix
    b.isMat <-
	if(missing(b)) {
	    ## default b = Identity = Diagonal(nrow(a)), however more efficiently
	    b <- .sparseDiagonal(n)
	    TRUE
	} else {
	    isM <- !is.null(dim(b))
	    if(isM && nrow(b) != n)
		stop("RHS 'b' has wrong number of rows:", nrow(b))
	    if(!isM && length(b) != n)
		stop("RHS 'b' has wrong length", length(b))
	    isM
        }
    ## bp := P %*% b
    bp <- if(b.isMat) b[lu.a@p+1L, ] else b[lu.a@p+1L]
    ## R:= U^{-1} L^{-1} P b
    R <- solve(lu.a@U, solve(lu.a@L, bp))
    ## result = Q'R = Q' U^{-1} L^{-1} P  b  = A^{-1} b,  as  A = P'LUQ
    R[invPerm(lu.a@q, zero.p=TRUE), ]
}

## FIXME: workaround, till  .Call(dgCMatrix_matrix_solve, a, b, sparse=TRUE)  works:
.solve.dgC <- function(a, b, sparse, tol = .Machine$double.eps)
    if(sparse) .solve.dgC.lu(a, b, tol=tol) else .Call(dgCMatrix_matrix_solve, a, b, FALSE)

.solve.dgC.mat <- function(a, b, sparse=FALSE, tol = .Machine$double.eps, ...) {
    chk.s(..., which.call=-2)
    if(sparse) .solve.dgC.lu(a, b, tol=tol) else .Call(dgCMatrix_matrix_solve, a, b, FALSE)
}

## Provide also for pkg MatrixModels
.solve.dgC.chol <- function(x, y)
    .Call(dgCMatrix_cholsol, as(x, "CsparseMatrix"), y)
.solve.dgC.qr <- function(x, y, order = 1L) {
    cld <- getClass(class(x))
    .Call(dgCMatrix_qrsol, # has AS_CSP(): must be dgC or dtC:
          if(extends1of(cld, c("dgCMatrix", "dtCMatrix"))) x
          else as(x, "dgCMatrix"),
          y, order)
}


setMethod("solve", signature(a = "dgCMatrix", b = "matrix"),	   .solve.dgC.mat)
setMethod("solve", signature(a = "dgCMatrix", b = "ddenseMatrix"), .solve.dgC.mat)

setMethod("solve", signature(a = "dgCMatrix", b = "dsparseMatrix"),
	  function(a, b, sparse=NA, tol = .Machine$double.eps, ...) {
	      chk.s(..., which.call=-2)
	      if(is.na(sparse)) {
		  if(isSymmetric(a))
		      ## TODO: fast cholmod_symmetric() for Cholesky
		      return(solve(forceCspSymmetric(a, isTri=FALSE), b, tol=tol))
					#-> sparse result
		  ## else
		  sparse <- FALSE # (old default)
	      }
	      ## FIXME: be better when sparse=TRUE (?)
	      .solve.dgC(a, as(b, "denseMatrix"), tol=tol, sparse=sparse)
	  })

## This is a really dumb method but some people apparently want it
## (MM: a bit less dumb now with possibility of staying sparse)
setMethod("solve", signature(a = "dgCMatrix", b = "missing"),
	  function(a, b, sparse=NA, tol = .Machine$double.eps, ...) {
	      chk.s(..., which.call=-2)
	      if(is.na(sparse)) {
		  if(isSymmetric(a))
		      ## TODO: fast cholmod_symmetric() for Cholesky
		      return(solve(forceCspSymmetric(a, isTri=FALSE),
				   b = Diagonal(nrow(a)))) #-> sparse result
		  ## else
		  sparse <- FALSE # (old default)
	      }
	      if(sparse)
		  .solve.dgC.lu(a, tol=tol) # -> "smart" diagonal b
	      else .Call(dgCMatrix_matrix_solve, a, b=diag(nrow(a)), FALSE)
	  })