1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
|
#### Utilities for Sparse Model Matrices
## The "first" version {no longer used}:
fac2sparse <- function(from, to = c("d","i","l","n","z"), drop.unused.levels = FALSE)
{
## factor(-like) --> sparseMatrix {also works for integer, character}
fact <- if (drop.unused.levels) factor(from) else as.factor(from)
levs <- levels(fact)
n <- length(fact)
to <- match.arg(to)
## MM: using new() and then assigning slots has efficiency "advantage"
## of *not* validity checking
res <- new(paste0(to, "gCMatrix"))
res@i <- as.integer(fact) - 1L # 0-based
res@p <- 0:n
res@Dim <- c(length(levs), n)
res@Dimnames <- list(levs, NULL)
if(to != "n")
res@x <- rep.int(switch(to,
"d" = 1., "i" = 1L, "l" = TRUE, "z" = 1+0i),
n)
res
}
## This version can deal with NA's [maybe slightly less efficient (how much?)] :
fac2sparse <- function(from, to = c("d","i","l","n","z"),
drop.unused.levels = TRUE, repr = c("C","T","R"), giveCsparse)
{
## factor(-like) --> sparseMatrix {also works for integer, character}
fact <- if (drop.unused.levels) factor(from) else as.factor(from)
levs <- levels(fact)
n <- length(fact)
to <- match.arg(to)
i <- as.integer(fact) - 1L ## 0-based indices
df <- data.frame(i = i, j = if(n) 0:(n-1L) else integer())[!is.na(i),]
if(to != "n")
df$x <- rep.int(switch(to,
"d" = 1., "i" = 1L, "l" = TRUE, "z" = 1+0i),
nrow(df))
T <- do.call(new, c(list(Class = paste0(to, "gTMatrix"),
Dim = c(length(levs), n),
Dimnames = list(levs, names(fact))), df))
## silent, back compatible (not yet warning about 'giveCsparse' deprecation):
repr <- if(missing(repr) && !missing(giveCsparse))
if(giveCsparse) "C" else "T"
else match.arg(repr)
switch(repr,
"C" = .Call(Tsparse_to_Csparse, T, FALSE),
"T" = T,# TsparseMatrix
"R" = as(T, "RsparseMatrix"))
}
setAs("factor", "sparseMatrix", function(from) fac2sparse(from, to = "d"))
##' fac2Sparse() := fac2sparse w/ contrasts
##'
##' @param from factor of which we want the "contrasted" (indicator)
##' design matrix
##' @param to character string specifying the response type
##' @param drop.unused.level logical indicating if non-present factor
##' levels should be dropped, via factor(from)
##' @param factorPatt12 logical vector fp[] of length 2
##' fp[1] : give contrasted t(X); fp[2] : give "dummy" t(X) [=fac2sparse()]
##' @param contrasts.arg character string or NULL or (coercable to)
##' sparseMatrix, specifying the contrast
##'
##' @return a list of length two, each with the corresponding t(model matrix),
##' when the corresponding factorPatt12 is true.
fac2Sparse <- function(from, to = c("d","i","l","n","z"),
drop.unused.levels = TRUE, repr = c("C","T","R"), giveCsparse,
factorPatt12, contrasts.arg = NULL)
{
stopifnot(is.logical(factorPatt12), length(factorPatt12) == 2)
if(any(factorPatt12))
m <- fac2sparse(from, to=to, drop.unused.levels=drop.unused.levels,
repr=repr, giveCsparse=giveCsparse)
##
## code '2' : keep dummy, i.e. no contrasts :
ans <- list(NULL, if(factorPatt12[2]) m)
##
if(factorPatt12[1]) {
## *do* use contrasts.arg
if(is.null(contrasts.arg))
contrasts.arg <- getOption("contrasts")[if(is.ordered(from))
"ordered" else "unordered"]
ans[[1]] <-
crossprod(if(is.character(contrasts.arg)) {
stopifnot(is.function(FUN <- get(contrasts.arg)))
## calling contr.*() with correct level names directly :
FUN(rownames(m), sparse = TRUE)
} else as(contrasts.arg, "sparseMatrix"), m)
}
ans
}
## "Sparse model.matrix()"
## model.matrix(object, data = environment(object),
## contrasts.arg = NULL, xlev = NULL, ...)
##
## Originally: Cut'n'paste from model.matrix() ... just replacing small part at end:
sparse.model.matrix <-
function(object, data = environment(object), contrasts.arg = NULL,
xlev = NULL, transpose = FALSE,
drop.unused.levels = FALSE, row.names = TRUE
, sep = ""
, verbose = FALSE, ...)
{
t <- if(missing(data)) terms(object) else terms(object, data=data)
if (is.null(attr(data, "terms")))
data <- model.frame(object, data, xlev=xlev)
else {
reorder <- match(sapply(attr(t,"variables"),deparse,
width.cutoff=500)[-1L],
names(data))
if (anyNA(reorder))
stop("model frame and formula mismatch in model.matrix()")
if(!isSeq(reorder, ncol(data), Ostart=FALSE))
data <- data[,reorder, drop=FALSE]
}
int <- attr(t, "response")
if(length(data)) { # otherwise no rhs terms, so skip all this
contr.funs <- as.character(getOption("contrasts"))
namD <- names(data)
## turn any character columns into factors
for(i in namD)
if(is.character(data[[i]]))
data[[i]] <- factor(data[[i]])
isF <- vapply(data, function(x) is.factor(x) || is.logical(x), NA)
isF[int] <- FALSE
isOF <- vapply(data, is.ordered, NA)
for(nn in namD[isF]) # drop response
if(is.null(attr(data[[nn]], "contrasts")))
contrasts(data[[nn]]) <- contr.funs[1 + isOF[nn]]
## it might be safer to have numerical contrasts:
## get(contr.funs[1 + isOF[nn]])(nlevels(data[[nn]]))
if (!is.null(contrasts.arg) && is.list(contrasts.arg)) {
if (is.null(namC <- names(contrasts.arg)))
stop("invalid 'contrasts.arg' argument")
for (nn in namC) {
if (is.na(ni <- match(nn, namD)))
warning(gettextf("variable '%s' is absent, its contrast will be ignored", nn),
domain = NA)
else {
ca <- contrasts.arg[[nn]]
## FIXME: work for *sparse* ca
if(is.matrix(ca)) contrasts(data[[ni]], ncol(ca)) <- ca
else contrasts(data[[ni]]) <- contrasts.arg[[nn]]
}
}
}
} else { # internal model.matrix needs some variable
isF <- FALSE
data <- cbind(data, x = 0)
}
## <Sparse> src/library/stats/R/models.R has
## ans <- .Internal(model.matrix(t, data))
if(verbose) {
cat("model.spmatrix(t, data, ..) with t =\n"); str(t,give.attr=FALSE) }
ans <- model.spmatrix(t, data, transpose=transpose,
## ==============
drop.unused.levels=drop.unused.levels,
row.names=row.names, sep=sep, verbose=verbose)
## </Sparse>
attr(ans, "contrasts") <-
lapply(data[isF], function(x) attr(x, "contrasts"))
ans
} ## {sparse.model.matrix}
##' Produce the t(Z); Z = "design matrix" of (X : Y), where
##' --- t(Z) : aka rowwise -version : "r"
##'
##' @title sparse model matrix for 2-way interaction
##' @param X and Y either are numeric matrices {maybe 1-column}
##' @param Y or "as(<factor>, sparseM)"
##' @param do.names logical
##' @param forceSparse logical
##' @return
##' @author Martin Maechler
sparse2int <- function(X, Y, do.names = TRUE, forceSparse = FALSE, verbose = FALSE)
{
### FIXME -- the X[rep(..), ] * Y[rep(..), ] construct can become HUGE, even for sparse X[],Y[]
### ----- --> Matrix bug #1330 and ~/R/MM/Pkg-ex/Matrix/sparse-matrix-fix.R
if(do.names) {
dnx <- dimnames(X)
dny <- dimnames(Y)
}
dimnames(Y) <- dimnames(X) <- list(NULL,NULL)
nx <- nrow(X)
ny <- nrow(Y)
r <-
if((nX <- is.numeric(X)) | (nY <- is.numeric(Y))) {
if(nX) {
if (nY || nx > 1) { # both numeric, or X >=2 "columns"
F <- if(forceSparse) function(m) .Call(dense_to_Csparse, m) else identity
F((if(ny == 1) X else X[rep.int(seq_len(nx), ny) , ]) *
(if(nx == 1) Y else Y[rep (seq_len(ny),each=nx), ]))
}
else { ## numeric X (1 "column"), sparseMatrix Y
r <- Y
dp <- Y@p[-1] - Y@p[-(Y@Dim[2]+1L)]
## stopifnot(all(dp %in% 0:1))
## if(nx == 1)
## FIXME: similar trick would be applicable for nx > 2
r@x <- X[dp == 1L] * Y@x
r
}
}
else { ## sparseMatrix X, numeric Y
if(ny == 1) {
## FIXME: similar trick would be applicable for ny > 2
r <- X
dp <- X@p[-1] - X@p[-(X@Dim[2]+1L)]
## stopifnot(all(dp %in% 0:1))
r@x <- Y[dp == 1L] * X@x
r
}
else { ## ny > 1 -- *larger* matrix
X[rep.int(seq_len(nx), ny) , ] *
(if(nx == 1) Y else Y[rep(seq_len(ny),each=nx), ])
}
}
}
else { ## X & Y are both sparseMatrix
(if(ny == 1) X else X[rep.int(seq_len(nx), ny) , ]) *
(if(nx == 1) Y else Y[rep (seq_len(ny),each=nx) , ])
}
if(verbose) cat(sprintf(" sp..2int(%s[%d],%s[%d]) ",
if(nX)"<N>" else "<sparse>", nx,
if(nY)"<N>" else "<sparse>", ny))
if(do.names) {
## FIXME: This names business needs a good solution..
## but maybe "up in the caller"
if(!is.null(dim(r)) &&
!is.null(nX <- dnx[[1]]) &&
!is.null(nY <- dny[[1]]))
rownames(r) <- outer(nX, nY, paste, sep = ":")
}
r
}
##' Sparse Model Matrix for a (high order) interaction term A:B:x:C
##'
##' @param rList list(.) of (transposed) single-factor model matrices,
##' belonging to, say, factors a, b, c,...
##' @param do.names
##' @param forceSparse
##' @param verbose
##' @return the model matrix corresponding to a:b:...
sparseInt.r <- function(rList, do.names = TRUE, forceSparse = FALSE, verbose=FALSE)
{
nl <- length(rList)
if(forceSparse)
F <- function(m) if(is.matrix(m)) .Call(dense_to_Csparse, m) else m
if(verbose)
cat("sparseInt.r(<list>[1:",nl,"], f.Sp=",forceSparse,"): is.mat()= (",
paste(symnum(vapply(rList, is.matrix, NA)), collapse=""),
")\n", sep="")
if(nl == 1) {
if(forceSparse) F(rList[[1]]) else rList[[1]]
} else {
## 'recursion' free:
r <- rList[[1]]
for(j in 2:nl)
r <- sparse2int(r, rList[[j]],
do.names=do.names, verbose=verbose)
if(forceSparse) F(r) else r
}
}
## not used currently
is.model.frame <- function(x)
{
## Purpose: check if x is a "valid" model.frame
## ------------------------------------------------------------
## Author: Martin Maechler, Date: 3 Jul 2009
is.data.frame(x) &&
!is.null(tms <- attr(x, "terms")) &&
inherits(tms, "terms") && ## is.terms() would be better
inherits(tms, "formula") &&
is.matrix(attr(tms, "factors")) &&
is.language(vv <- attr(tms, "variables")) &&
vv[[1]] == as.symbol("list") &&
all(vapply(as.list(vv[-1]), as.character, "") %in% colnames(x))
## all((vars <- sapply(as.list(vv[-1]), as.character)) %in% colnames(x))
## and we could go on testing vars
}
##' Create a sparse model matrix from a model frame.
##' -- This version uses 'rBind' and returns X' i.e. t(X) :
##'
##' @title Sparse Model Matrix from Model Frame
##' @param trms a "terms" object
##' @param mf a data frame, typically resulting from model.frame()
##' @param transpose logical indicating if X' = t(X) {is faster!}
##' or X should be returned
##' @param drop.unused.levels logical indicating if unused factor
##' levels should be dropped
##' @param row.names
##' @return sparse matrix (class "dgCMatrix")
##' @author Martin Maechler
model.spmatrix <- function(trms, mf, transpose=FALSE,
drop.unused.levels = FALSE, row.names=TRUE, sep="", verbose=FALSE)
{
## Author: Martin Maechler, Date: 7 Jul 2009
## mf is a model frame or a "simple" data.frame [after reorder !]
stopifnot(is.data.frame(mf))
n <- nrow(mf)
if(row.names)
rnames <- row.names(mf)
## mf: make into list, dropping all attributes (but the names)
### FIXME: for poly(., 5) mf has a 5-column matrix as "one column" => looses names here
fnames <- names(mf <- unclass(mf))
attributes(mf) <- list(names = fnames)
if(length(factorPattern <- attr(trms, "factors"))) {
d <- dim(factorPattern)
nVar <- d[1]
nTrm <- d[2]
n.fP <- dimnames(factorPattern)
fnames <- n.fP[[1]] # == names of variables {incl. "F(var)"} in the model
Names <- n.fP[[2]] # == colnames == names of terms: "a", "b:c", ...
} else { ## degenerate, e.g. 'Y ~ 1'
nVar <- nTrm <- 0L
fnames <- Names <- character(0)
}
## all the "variables in the model" are also in "mf", including "sin(x)";
## actually, ..../src/main/model.c even assumes
stopifnot((m <- length(mf)) >= nVar)
if(verbose)
cat(sprintf("model.spm..(): (n=%d, nVar=%d (m=%d), nTrm=%d)\n",
n, nVar,m, nTrm))
if(m > nVar) mf <- mf[seq_len(nVar)]
stopifnot(fnames == names(mf), allow.logical0 = TRUE)
noVar <- nVar == 0
##>> this seems wrong; we use 1:nVar for indexing mf[] below ..
##>> if(noVar) nVar <- 1L # (as in ~/R/D/r-devel/R/src/main/model.c)
## Note: "character" variables have been changed to factor in the caller;
## hence: both factor and *logical* should be dealt as factor :
is.f <- if(noVar) logical(0) else vapply(mf, function(.)
is.factor(.) | is.logical(.), NA)
indF <- which(is.f)
if(verbose) { cat(" --> indF =\n"); print(indF) }
hasInt <- attr(trms, "intercept") == 1
## the degree of interaction:
## intOrder <- attr(trms, "order")
##
if(!hasInt && length(indF)) {
## change the '1' of the first factor into a '2' :
if(any(i1 <- factorPattern[indF, ] == 1))
## replace at the first '1' location:
factorPattern[indF,][which.max(i1)] <- 2L
else {}
## nothing to do
}
## Convert "factors" to "Rowwise- sparseMatrix ("dummy"-matrix) -----------
## Result: a list of sparse model matrices for the "factor"s :
f.matr <- structure(vector("list", length = length(indF)),
names = fnames[indF])
i.f <- 0
## ---- For each variable in the model -------------------
for(i in seq_len(nVar)) {
nam <- fnames[i]
f <- mf[[i]]
if(is.f[i]) {
fp <- factorPattern[i,] ## == factorPattern[nam,]
contr <- attr(f, "contrasts")
f.matr[[(i.f <- i.f + 1)]] <- # a list of 2
lapply(fac2Sparse(f, to = "d",
drop.unused.levels=drop.unused.levels,
factorPatt12 = 1:2 %in% fp,
contrasts.arg = contr),
function(s) {
if(is.null(s)) return(s)
## else
rownames(s) <- ## for some contr.*(), have lost rownames; hmm..
paste(nam, rownames(s) %||% seq_len(nrow(s)), sep=sep)
s
})
} else { ## continuous variable --> "matrix" - for all of them
if(any(iA <- (cl <- class(f)) == "AsIs")) # drop "AsIs" class
class(f) <- if(length(cl) > 1L) cl[!iA]
nr <- if(is.matrix(f)) nrow(f <- t(f)) else (dim(f) <- c(1L, length(f)))[1]
if(is.null(rownames(f)))
rownames(f) <- if(nr == 1) nam else paste(nam, seq_len(nr), sep=sep)
mf[[i]] <- f
}
}
if(verbose) {
cat(" ---> f.matr list :\n")
str(f.matr, max = as.integer(verbose))
fNms <- format(dQuote(Names))
dim.string <- gsub('5', as.character(floor(1+log10(n))),
" -- concatenating (r, rj): dim = (%5d,%5d) | (%5d,%5d)\n")
}
## FIXME: do all this in C --
getR <- function(N) # using 'nm'
if(!is.null(r <- f.matr[[N]])) r[[factorPattern[N, nm]]] else mf[[N]]
vNms <- "(Intercept)"[hasInt]
counts <- integer(nTrm)
r <-
if(hasInt) ## column of 1's - as sparse
new("dgCMatrix", i = 0:(n-1L), p = c(0L, n),
Dim = c(n, 1L), x = rep.int(1, n))
else new("dgCMatrix", Dim = c(n, 0L))
if(transpose) r <- t(r)
iTrm <- seq_len(nTrm)
for(j in iTrm) { ## j-th term
nm <- Names[j]
if(verbose) cat(sprintf("term[%2d] %s .. ", j, fNms[j]))
nmSplits <- strsplit(nm, ":", fixed=TRUE)[[1]]
## NOTA BENE: This can be very slow when many terms are involved
## FIXME ??? why does it use *much* memory in those cases ??
rj <- sparseInt.r(lapply(nmSplits, getR), do.names=TRUE,
forceSparse = TRUE, verbose=verbose)# or just (verbose >= 2))
if(verbose) cat(sprintf(dim.string, nrow(r), ncol(r), nrow(rj),ncol(rj)))
## fast version of cbind2() / rbind2(), w/o checks, dimnames, etc
r <- if(transpose) .Call(Csparse_vertcat, r, rj)
else .Call(Csparse_horzcat, r, t(rj))
## if(verbose) cat(" [Ok]\n")
vNms <- c(vNms, dimnames(rj)[[1]])
counts[j] <- nrow(rj)
}
rns <- if(row.names) rnames
dimnames(r) <- if(transpose) list(vNms, rns) else list(rns, vNms)
attr(r, "assign") <- c(if(hasInt) 0L, rep(iTrm, counts))
r
} ## model.spmatrix()
|