File: construct.R

package info (click to toggle)
rmatrix 1.7-4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,096 kB
  • sloc: ansic: 97,203; makefile: 280; sh: 165
file content (764 lines) | stat: -rw-r--r-- 28,139 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
Matrix <- function(data = NA, nrow = 1, ncol = 1, byrow = FALSE,
                   dimnames = NULL, sparse = NULL,
                   doDiag = TRUE, forceCheck = FALSE)
{
    i.M <- i.sM <- i.dM <- i.sV <- i.m <- FALSE
    mnrow <- missing(nrow)
    mncol <- missing(ncol)
    if(isS4(data)) {
        cld <- getClassDef(class(data))
        i.M <- extends(cld, "Matrix")
        if(i.M) {
            i.sM <- extends(cld, "sparseMatrix")
            i.dM <- i.sM && extends(cld, "diagonalMatrix")
        } else if(extends(cld, "sparseVector")) {
            ## need to transmit missingness to 'spV2M'
            call. <- quote(spV2M(x = data, nrow =, ncol =, byrow = byrow))
            if(!mnrow)
                call.[[3L]] <- quote(nrow)
            if(!mncol)
                call.[[4L]] <- quote(ncol)
            data <- eval(call.)
            i.M <- i.sM <- i.sV <- forceCheck <- TRUE
        }
    } else {
        i.m <- is.matrix(data)
    }
    if(!i.M) {
        ## validate non-Matrix 'data', throwing type errors _early_
        if(is.object(data)) {
            if(i.m)
                class(data) <- NULL # retaining 'dim'
            else
                data <- as.vector(data)
        }
        mode. <- mode(data)
        kind <- switch(mode., numeric = "d", logical = "l",
                       stop("invalid 'data'"))
    }
    if(i.M || i.m) {
        ## 'data' is a Matrix or a numeric or logical matrix
        ## without a 'class' attribute
        if(!i.sV && !(mnrow && mncol && missing(byrow)))
            warning("'nrow', 'ncol', 'byrow' disregarded for [mM]atrix 'data'")
        if(!is.null(dimnames))
            dimnames(data) <- dimnames
        if(is.null(sparse))
            sparse <- sparseDefault(data)
        if(i.M) {
            ## return early in these cases:
            if(i.dM)
                ## !doDiag has been documented to result in a coercion to
                ## symmetricMatrix; we must use diag2*() below because the
                ## "usual" as(<diagonalMatrix>, "(Csparse|unpacked)Matrix")
                ## inherits from triangularMatrix, _not_ symmetricMatrix
                return(if(doDiag)
                           data
                       else if(sparse)
                           .diag2sparse(data, ".", "s", "C", "U")
                       else .diag2dense(data, ".", "s", FALSE, "U"))
            if(!forceCheck)
                return(if(i.sM == sparse)
                           data
                       else if(sparse)
                           as(data, "CsparseMatrix")
                       else as(data, "unpackedMatrix"))
        }
    } else {
        ## 'data' is a numeric or logical vector or non-matrix array
        ## without a 'class' attribute
        if(length(data) == 1L && !is.na(data) && data == 0 &&
           (is.null(sparse) || sparse)) {
            ## Matrix(0, ...): sparseMatrix unless sparse=FALSE
            ## MJ: we should _try_ to behave as R's do_matrix()
            ##     in the edge cases ... integer overflow is "OK"
            ##     since anyNA(Dim) is caught by validity methods
            if(mnrow == mncol) {
                nrow <- as.integer(nrow)
                ncol <- as.integer(ncol)
            } else if(mnrow) {
                ncol <- as.integer(ncol)
                if(ncol == 0L)
                    stop("data is too long")
                nrow <- as.integer(ceiling(1 / ncol))
            } else {
                nrow <- as.integer(nrow)
                if(nrow == 0L)
                    stop("data is too long")
                ncol <- as.integer(ceiling(1 / nrow))
            }
            square <- nrow == ncol
            if(is.null(dimnames))
                dimnames <- list(NULL, NULL)
            if(square && doDiag)
                return(new(paste0(kind, "diMatrix"),
                           Dim = c(nrow, ncol),
                           Dimnames = dimnames,
                           x = vector(mode., nrow)))
            data <- new(paste0(kind, if(square) "s" else "g", "CMatrix"),
                        Dim = c(nrow, ncol),
                        Dimnames = dimnames,
                        p = integer(ncol + 1))
            i.M <- i.sM <- sparse <- TRUE
        } else {
            ## usual case: vector|array->matrix
            data <- .External(Mmatrix,
                              data, nrow, ncol, byrow, dimnames, mnrow, mncol)
            if(is.null(sparse))
                sparse <- sparseDefault(data)
            i.m <- TRUE
        }
    }

    ## 'data' is a Matrix (but _not_ a diagonalMatrix) or a
    ## numeric or logical matrix without a 'class' attribute
    if(doDiag && isDiagonal(data))
        ## as(<[mM]atrix>, "diagonalMatrix") uses check = TRUE (a waste)
        return(forceDiagonal(data))
    if(i.m || i.sM != sparse) {
        data <- as(data, if(sparse) "CsparseMatrix" else "unpackedMatrix")
        if(i.m)
            ## as(<matrix>, "CsparseMatrix"), as(<matrix>, "unpackedMatrix")
            ## already check for symmetric, triangular structure
            return(data)
    }
    if(!is(data, "generalMatrix"))
        data
    else if(isSymmetric(data))
        forceSymmetric(data)
    else if(!(it <- isTriangular(data)))
        data
    else if(attr(it, "kind") == "U")
        triu(data)
    else tril(data)
}

sparseMatrix <- function(i, j, p, x, dims, dimnames,
                         symmetric = FALSE,
                         triangular = FALSE,
                         index1 = TRUE,
                         repr = c("C", "R", "T"),
                         giveCsparse,
                         check = TRUE,
                         use.last.ij = FALSE)
{
    if((m.i <- missing(i)) + (m.j <- missing(j)) + (m.p <- missing(p)) != 1L)
        stop("exactly one of 'i', 'j', and 'p' must be missing from call")
    if(symmetric && triangular)
        stop("use Diagonal() to construct diagonal (symmetric && triangular) sparse matrices")
    index1 <- as.logical(index1) # allowing {0,1}

    repr <- # keep in sync with toeplitz(<sparseVector>)
        ## NB: prior to 2020-05, we had 'giveCsparse' {T->"C" [default], F->"T"}
        ##     but no 'repr' ... the following is to remain backwards compatible
        if(missing(giveCsparse))
            match.arg(repr)
        else if(!missing(repr)) {
            warning("'giveCsparse' is deprecated; using 'repr' instead")
            match.arg(repr)
        ## } else {
        ##     repr <- if(giveCsparse) "C" else "T"
        ##     warning(gettextf("'giveCsparse' is deprecated; setting repr=\"%s\" for you", repr),
        ##             domain = NA)
        ## }
        } else if(giveCsparse) {
            ## NOT YET:
            ## warning("'giveCsparse' is deprecated; setting repr=\"C\" for you")
            "C"
        } else {
            warning("'giveCsparse' is deprecated; setting repr=\"T\" for you")
            "T"
        }

    if(!m.p) {
        p <- as.integer(p)
        if((n.p <- length(p)) == 0L || anyNA(p) || p[1L] != 0L ||
           any((dp <- p[-1L] - p[-n.p]) < 0L))
            stop("'p' must be a nondecreasing vector c(0, ...)")
        if((n.dp <- length(dp)) > .Machine$integer.max)
            stop("dimensions cannot exceed 2^31-1")
        i. <- rep.int(seq.int(from = 0L, length.out = n.dp), dp)
        if(m.i) i <- i. else j <- i.
    }

    if(!m.i)
        i <- if(index1) as.integer(i) - 1L else as.integer(i) # need 0-index
    if(!m.j)
        j <- if(index1) as.integer(j) - 1L else as.integer(j) # need 0-index

    rij <- cbind(if(n.i <- length(i)) range(i) else 0:-1,
                 if(n.j <- length(j)) range(j) else 0:-1,
                 deparse.level = 0L)
    if(anyNA(rij))
        stop("'i' and 'j' must not contain NA") # and not overflow
    if(any(rij[1L, ] < 0L))
        stop("'i' and 'j' must be ", if(index1) "positive" else "non-negative")
    dims <-
        if(!missing(dims)) {
            if(length(dims) != 2L ||
               any(is.na(dims) | dims < 0L | dims >= .Machine$integer.max + 1))
                stop("invalid 'dims'")
            if(any(dims - 1L < rij[2L, ]))
                stop("'dims' must contain all (i,j) pairs")
            as.integer(dims)
        } else if(symmetric || triangular)
            rep.int(max(rij), 2L) + 1L
        else rij[2L, ] + 1L

    kind <- if(m.x <- missing(x)) "n" else if(is.integer(x)) "d" else .M.kind(x)
    shape <-
        if(symmetric) {
            if(dims[1L] != dims[2L])
                stop("symmetric matrix must be square")
            "s"
        } else if(triangular) {
            if(dims[1L] != dims[2L])
                stop("triangular matrix must be square")
            "t"
        } else "g"

    r <- new(paste0(kind, shape, "TMatrix"))
    r@Dim <- dims
    if(!missing(dimnames) && !is.null(dimnames))
        r@Dimnames <-
            if(is.character(validDN(dimnames, dims)))
                dimnames
            else fixupDN(dimnames) # needs a valid argument
    if((symmetric || triangular) && all(i >= j))
        r@uplo <- "L" # else "U", the prototype
    if(!m.x) {
        if(is.integer(x))
            x <- as.double(x)
        if((n.x <- length(x)) > 0L && n.x != n.i) {
            if(n.x < n.i) {
                if(n.i %% n.x != 0L)
                    warning(if(m.i) "p[length(p)] " else "length(i) ",
                            "is not an integer multiple of length(x)")
                x <- rep_len(x, n.i) # recycle
            } else if(n.x == 1L)
                x <- x[0L] # tolerate length(i) = 0, length(x) = 1
            else stop("length(x) must not exceed ",
                      if(m.i) "p[length(p)]" else "length(i)")
        }
        if(use.last.ij && n.i == n.j &&
           anyDuplicated.matrix(ij <- cbind(i, j, deparse.level = 0L),
                                fromLast = TRUE)) {
            which.not.dup <- which(!duplicated(ij, fromLast = TRUE))
            i <- i[which.not.dup]
            j <- j[which.not.dup]
            x <- x[which.not.dup]
        }
        r@x <- x
    }
    r@i <- i
    r@j <- j

    if(check)
        validObject(r)
    switch(repr, "C" = .M2C(r), "T" = r, "R" = .M2R(r),
           ## should never happen:
           stop("invalid 'repr'; must be \"C\", \"R\", or \"T\""))
}

spMatrix <- function(nrow, ncol,
                     i = integer(0L), j = integer(0L), x = double(0L))
    new(paste0(if(is.integer(x)) "d" else .M.kind(x), "gTMatrix"),
        Dim = c(as.integer(nrow), as.integer(ncol)),
        i = as.integer(i) - 1L,
        j = as.integer(j) - 1L,
        x = if(is.integer(x)) as.double(x) else x)

Diagonal <- function(n, x = NULL, names = FALSE)
{
    nx <- length(x)
    if(missing(n))
        n <- nx
    else if(!is.numeric(n) || length(n) != 1L || is.na(n) || n < 0L)
        stop("'n' must be a non-negative integer")
    if(is.double(n) && n >= .Machine$integer.max + 1)
        stop("dimensions cannot exceed 2^31-1")
    n <- as.integer(n) # discarding attributes
    if(is.null(x)) {
        r <- new("ddiMatrix")
        r@diag <- "U"
        if(n > 0L) {
            r@Dim <- c(n, n)
            if(is.character(names) && length(names) == n)
                r@Dimnames <- list(names, names)
        }
        return(r)
    }
    if(is.object(x))
        stop(gettextf("'x' has unsupported class \"%s\"", class(x)[1L]),
             domain = NA)
    names.x <- names(x) # keeping for later
    r <- new(switch(typeof(x),
                    ## discarding attributes, incl. 'dim' and 'names'
                    logical = { x <- as.logical(x); "ldiMatrix" },
                    integer =,
                    double = { x <- as.double(x); "ddiMatrix" },
                    stop(gettextf("'x' has unsupported type \"%s\"", typeof(x)),
                         domain = NA)))
    if(n == 0L)
        return(r)
    if(nx != 1L)
        r@x <-
            if(nx == n)
                x
            else if(nx > 0L)
                rep_len(x, n)
            else stop("attempt to recycle 'x' of length 0 to length 'n' (n > 0)")
    else if(is.na(x) || x != 1)
        r@x <- rep.int(x, n)
    else r@diag <- "U"
    r@Dim <- c(n, n)
    if(is.character(names)) {
        if(length(names) == n)
            r@Dimnames <- list(names, names)
    } else if(isTRUE(names) && !is.null(names.x)) {
        names.x <- rep_len(names.x, n) # we know length(names.x) > 0L
        r@Dimnames <- list(names.x, names.x)
    }
    r
}

.sparseDiagonal <- function(n, x = NULL, uplo = "U", shape = "t",
                            unitri = TRUE, kind, cols)
{
    if(missing(n))
        n <- length(x)
    else if(!is.numeric(n) || length(n) != 1L || is.na(n) || n < 0L)
        stop("'n' must be a non-negative integer")
    if(is.double(n) && n >= .Machine$integer.max + 1)
        stop("dimensions cannot exceed 2^31-1")
    n <- nj <- as.integer(n) # stripping attributes

    if(!(missing(shape) ||
         (is.character(shape) && length(shape) == 1L && !is.na(shape) &&
          any(shape == c("g", "t", "s")))))
        stop("'shape' must be one of \"g\", \"t\", \"s\"")

    if(!((m.kind <- missing(kind)) ||
         (is.character(kind) && length(kind) == 1L && !is.na(kind) &&
          any(kind == c("d", "l", "n")))))
        stop("'kind' must be one of \"d\", \"l\", \"n\"")

    if(m.kind || kind != "n") {
        if(is.null(x))
           x <- if(m.kind) { kind <- "d"; 1 } else switch(kind, d = 1, l = TRUE)
        else if(is.object(x))
            stop(gettextf("'x' has unsupported class \"%s\"",
                          class(x)[1L]),
                 domain = NA)
        else {
            kind. <- switch(typeof(x),
                            ## discarding attributes, incl. 'dim' in array case
                            logical = { x <- as.logical(x); "l" },
                            integer =,
                            double = { x <- as.double(x); "d" },
                            stop(gettextf("'x' has unsupported type \"%s\"",
                                          typeof(x)),
                                 domain = NA))
            if(m.kind)
                kind <- kind.
            else if(kind != kind.) {
                warning(gettextf("mismatch between typeof(x)=\"%s\" and kind=\"%s\"; using kind=\"%s\"",
                                 typeof(x), kind, kind.),
                        domain = NA)
                kind <- kind.
            }
        }
    }

    if(!(m.cols <- missing(cols))) {
        if(!is.numeric(cols))
            stop("'cols' must be numeric")
        else if((nj <- length(cols)) > 0L &&
                (n == 0L || anyNA(rj <- range(cols)) ||
                 rj[1L] < 0L || rj[2L] >= n))
            stop("'cols' has elements not in seq(0, length.out = n)")
        else {
            cols <- as.integer(cols)
            shape <- "g"
        }
    }

    r <- new(paste0(kind, shape, "CMatrix"))
    r@Dim <- c(n, nj)
    if(shape != "g") {
        if(!missing(uplo)) {
            if(is.character(uplo) && length(uplo) == 1L && !is.na(uplo) &&
               any(uplo == c("U", "L")))
                r@uplo <- uplo
            else stop("'uplo' must be \"U\" or \"L\"")
        }
        if(shape == "t" && unitri &&
           (kind == "n" || (!anyNA(x) && all(if(kind == "l") x else x == 1)))) {
            r@diag <- "U"
            r@p <- integer(nj + 1)
            return(r)
        }
    }
    if(nj > 0L) {
        r@p <- 0:nj
        r@i <- if(m.cols) 0:(nj - 1L) else cols
        if(kind != "n") {
            x <-
                if((nx <- length(x)) == n)
                    x
                else if(nx > 0L)
                    rep_len(x, n)
                else stop("attempt to recycle 'x' of length 0 to length 'n' (n > 0)")
            r@x <- if(m.cols) x else x[1L + cols]
        }
    }
    r
}

.trDiagonal <- function(n, x = NULL, uplo = "U", unitri = TRUE, kind)
    .sparseDiagonal(n, x, uplo, shape = "t", unitri = unitri, kind = kind)

.symDiagonal <- function(n, x = NULL, uplo = "U", kind)
    .sparseDiagonal(n, x, uplo, shape = "s", kind = kind)

.bdiag <- function(lst)
{
    if(!is.list(lst))
        stop("'lst' must be a list")
    if((n <- length(lst)) == 0L)
        return(new("dgTMatrix"))
    if(n == 1L)
        return(.M2T(asCspN(lst[[1L]])))

### FIXME? this is _slow_ when 'lst' is list of 75000 3-by-3 dense matrices
    lst <- unname(lapply(lst, function(x) .M2T(asCspN(x))))

    cl <- vapply(lst, class, "")
    kind  <- substr(cl, 1L, 1L) # "n", "l", or "d"
    shape <- substr(cl, 2L, 2L) # "g", "s", or "t"

    if(!(any(kind == (kind. <- "d")) || any(kind == (kind. <- "l"))))
        kind. <- "n"
    else if(any(z <- kind == "n"))
        lst[z] <- lapply(lst[z], .sparse2kind, kind.)

    shape. <-
        if(all(symmetric <- shape == "s"))
            "s"
        else if(all(shape == "t"))
            "t"
        else "g"

    if(shape. != "g") {
        uplo <- vapply(lst, slot, "", "uplo") # "U" or "L"
        if(shape. == "s")
            uplo. <-
                if(all(z <- uplo == "U"))
                    "U"
                else if(!any(z))
                    "L"
                else {
                    uplo.. <- if(2 * sum(z) >= n) { z <- !z; "U" } else "L"
                    lst[z] <- lapply(lst[z], .tCRT)
                    uplo..
                }
        else if(any(uplo != (uplo. <- uplo[1L])))
            shape. <- "g"
    }

    i_off <- c(0L, cumsum(vapply(lst, function(x) x@Dim[1L], 0L)))
    j_off <- c(0L, cumsum(vapply(lst, function(x) x@Dim[2L], 0L)))

    r <- new(paste0(kind., shape., "TMatrix"))
    r@Dim <- r@Dim <- c(i_off[n + 1L], j_off[n + 1L])
    if(shape. == "g")
        lst[symmetric] <- lapply(lst[symmetric], .sparse2g)
    else r@uplo <- uplo.
    r@i <- unlist(lapply(seq_len(n), function(k) i_off[k] + lst[[k]]@i),
                  FALSE, FALSE)
    r@j <- unlist(lapply(seq_len(n), function(k) j_off[k] + lst[[k]]@j),
                  FALSE, FALSE)
    if(kind. != "n")
        r@x <- unlist(lapply(lst, slot, "x"), FALSE, FALSE)
    r
}

bdiag <- function(...)
{
    if((n <- ...length()) == 0L)
        new("dgCMatrix")
    else if(n > 1L)
        .M2C(.bdiag(list(...)))
    else if(!is.list(x <- ..1))
        as(x, "CsparseMatrix")
    else if(length(x) == 1L)
        as(x[[1L]], "CsparseMatrix")
    else .M2C(.bdiag(x))
}

bandSparse <- function(n, m = n, k, diagonals,
                       symmetric = FALSE,
                       repr = "C", giveCsparse = (repr == "C"))
{
    ## Purpose: Compute a band-matrix by speciyfying its (sub-)diagonal(s)
    ## ----------------------------------------------------------------------
    ## Arguments: (n,m) : Matrix dimension
    ##                k : integer vector of "diagonal numbers",  with identical
    ##                    meaning as in  band(*, k)
    ##         diagonals: (optional!) list of (sub/super)diagonals
    ##         symmetric: if TRUE, specify only upper or lower triangle;
    ## ----------------------------------------------------------------------
    ## Author: Martin Maechler, Date: 20 Feb 2009, 22:42

    if(use.x <- !missing(diagonals)) # when specified, must be matrix or list
        diag.isMat <- is.matrix(diagonals)
    len.k <- length(k)
    stopifnot(!use.x || is.list(diagonals) || diag.isMat,
              k == as.integer(k), n == as.integer(n), m == as.integer(m))
    k <- as.integer(k)
    n <- as.integer(n)
    m <- as.integer(m)
    stopifnot(n >= 0, m >= 0, -n+1 <= (mik <- min(k)), (mak <- max(k)) <= m - 1)
    if(missing(repr) && !giveCsparse) {
        warning("'giveCsparse' has been deprecated; setting 'repr = \"T\"' for you")
        repr <- "T"
    } else if(!missing(repr) && !missing(giveCsparse))
        warning("'giveCsparse' has been deprecated; will use 'repr' instead")
    if(use.x) {
        if(diag.isMat) {
            if(ncol(diagonals) != len.k)
                stop(gettextf("'diagonals' matrix must have %d columns (= length(k) )",
                              len.k), domain=NA)
            getD <- function(j) diagonals[,j]

        } else { ## is.list(diagonals):
            if(length(diagonals) != len.k)
                stop(gettextf("'diagonals' must have the same length (%d) as 'k'",
                              len.k), domain=NA)
            getD <- function(j) diagonals[[j]]
        }
    }
    sqr <- n == m
    if(symmetric) {
        if(!sqr) stop("matrix can only be symmetric if square, but n != m")
        if(mik < 0 && mak > 0)
            stop("for symmetric band matrix, only specify upper or lower triangle\n hence, all k must have the same sign")
    } else
        tri <- sqr && sign(mik)*sign(mak) >= 0 # triangular result
    dims <- c(n,m)
    k.lengths <- ## This is a bit "ugly"; I got the cases "by inspection"
        if(n >= m) {
            ifelse(k >= m-n,  m - pmax(0,k), n+k)
        } else { ## n < m (?? k >= -n+1 always !!)
            ifelse(k >= -n+1, n + pmin(0,k), m-k)
        }
    i <- j <- integer(sum(k.lengths))
    if(use.x)
        x <- if(len.k > 0) # carefully getting correct type/mode
                 rep.int(getD(1)[1], length(i))
    off.i <- 0L
    for(s in seq_len(len.k)) {
        kk <- k[s] ## *is* integer
        l.kk <- k.lengths[s] ## == length of (sub-)diagonal kk
        ii1 <- seq_len(l.kk)
        ind <- ii1 + off.i
        if(kk >= 0) {
            i[ind] <- ii1
            j[ind] <- ii1 + kk
        } else { ## k < 0
            i[ind] <- ii1 - kk
            j[ind] <- ii1
        }
        if(use.x) {
            xx <- getD(s)
            if(length(xx) < l.kk)
                warning(gettextf("the %d-th (sub)-diagonal (k = %d) is too short; filling with NA's",
                                 s, kk), domain=NA)
            x[ind] <- xx[ii1]
        }
        off.i <- off.i + l.kk
    }
    if(symmetric) { ## we should have smarter sparseMatrix()
        UpLo <- if(min(k) >= 0) "U" else "L"
        T <-
            if(use.x) {
                if(is.integer(x))
                    x <- as.double(x)
                cc <- paste0(.M.kind(x), "sTMatrix")
                new(cc, i= i-1L, j= j-1L, x = x, Dim= dims, uplo=UpLo)
            } else new("nsTMatrix", i= i-1L, j= j-1L, Dim= dims, uplo=UpLo)
        switch(repr, "C" = .M2C(T), "T" = T, "R" = .M2R(T),
               stop("invalid 'repr'; must be \"C\", \"T\", or \"R\""))
    }
    else { ## not symmetric, possibly triangular
        if(use.x)
            sparseMatrix(i=i, j=j, x=x, dims=dims, triangular=tri, repr=repr)
        else
            sparseMatrix(i=i, j=j,	dims=dims, triangular=tri, repr=repr)
    }
}

rsparsematrix <- function(nrow, ncol, density,
                          nnz = round(density * maxE),
                          symmetric = FALSE,
                          rand.x = function(n) signif(rnorm(n), 2L), ...)
{
    maxE <- if(symmetric) nrow*(nrow+1)/2 else nrow*ncol
    stopifnot((nnz <- as.integer(nnz)) >= 0,
              nrow >= 0, ncol >= 0, nnz <= maxE)
    ## sampling with*out* replacement (replace=FALSE !):
    ijI <- -1L +
        if(symmetric) sample(indTri(nrow, diag=TRUE), nnz)
        else sample.int(maxE, nnz)
    ## i,j below correspond to  ij <- decodeInd(code, nr) :
    if(is.null(rand.x))
        sparseMatrix(i = ijI  %% nrow,
                     j = ijI %/% nrow,
                     index1 = FALSE,
                     symmetric = symmetric,
                     dims = c(nrow, ncol), ...)
    else
        sparseMatrix(i = ijI  %% nrow,
                     j = ijI %/% nrow,
                     x = rand.x(nnz),
                     index1 = FALSE,
                     symmetric = symmetric,
                     dims = c(nrow, ncol), ...)
}

Hilbert <- function(n)
{
    n <- as.integer(n)
    i <- seq_len(n)
    new("dpoMatrix", Dim = c(n, n), x = c(1/outer(i - 1L, i, `+`)))
}

spV2M <- function(x, nrow, ncol, byrow = FALSE,
                  check = TRUE, symmetric = FALSE)
{
    if(check && !is(x, "sparseVector"))
	stop("'x' must inherit from \"sparseVector\"")
    if(!missing(ncol)) { ncol <- as.integer(ncol)
			 if(ncol < 0) stop("'ncol' must be >= 0") }
    if(!missing(nrow)) { nrow <- as.integer(nrow)
			 if(nrow < 0) stop("'nrow' must be >= 0") }
    n <- length(x)
    if(symmetric) {
	if(missing(nrow)) stop("Must specify 'nrow' when 'symmetric' is true")
	if(!missing(ncol) && nrow != ncol)
	    stop("'nrow' and 'ncol' must be the same when 'symmetric' is true")
	## otherwise  ncol will not used at all when (symmetric)
	if(check && as.double(nrow)^2 != n)
	    stop("'x' must have length nrow^2 when 'symmetric' is true")
	## x <- x[indTri(nrow, upper=TRUE, diag=TRUE)]
    } else if(missing(nrow)) {
	nrow <- as.integer(
	    if(missing(ncol)) { ## both missing: --> (n x 1)
		ncol <- 1L
		n
	    } else {
		if(n %% ncol != 0) warning("'ncol' is not a factor of length(x)")
		as.integer(ceiling(n / ncol))
	    })
    } else if(missing(ncol)) {
        ncol <- if(symmetric) nrow else {
            if(n %% nrow != 0) warning("'nrow' is not a factor of length(x)")
            as.integer(ceiling(n / nrow)) }
    } else {                          ## both nrow and ncol specified
        n.n <- as.double(ncol) * nrow # no integer overflow
        if(n.n <  n) stop("nrow * ncol < length(x)", domain = NA)
        if(n.n != n) warning("nrow * ncol != length(x)", domain = NA)
    }
    ## now nrow * ncol >= n  (or 'symmetric')
    ##	   ~~~~~~~~~~~~~~~~
    kind <- .M.kind(x) # "d", "n", "l", "i", "z", ...
    has.x <- kind != "n"
    clStem <- if(symmetric) "sTMatrix" else "gTMatrix"
    ## "careful_new()" :
    cNam <- paste0(kind, clStem)
    chngCl <- is.null(newCl <- getClassDef(cNam))
    if(chngCl) { ## e.g. "igTMatrix" is not yet implemented
	if(kind == "z")
	    stop(gettextf("Class %s is not yet implemented", dQuote(cNam)),
		 domain = NA)
	## coerce to "double":
	newCl <- getClassDef(paste0("d", clStem))
    }
    r <- new(newCl, Dim = c(nrow, ncol))
    ## now "compute"  the (i,j,x) slots given x@(i,x)
    i0 <- x@i - 1L
    if(byrow) { ## need as.integer(.) since <sparseVector> @ i can be double
	j <- as.integer(i0 %% ncol)
	i <- as.integer(i0 %/% ncol)
    } else { ## default{byrow = FALSE}
	i <- as.integer(i0 %% nrow)
	j <- as.integer(i0 %/% nrow)
    }
    if(has.x)
	x <- if(chngCl) as.numeric(x@x) else x@x
    if(symmetric) {  ## using  uplo = "U"
	i0 <- i <= j ## i.e., indTri(nrow, upper=TRUE, diag=TRUE)
	i <- i[i0]
	j <- j[i0]
	if(has.x) x <- x[i0]
    }
    r@j <- j
    r@i <- i
    if(has.x) r@x <- x
    r
}

.sparseV2Mat <- function(from)
    spV2M(from, nrow = from@length, ncol = 1L, check = FALSE)

sp2vec <- function(x, mode = .type.kind[.M.kind(x)])
{
    ## sparseVector  ->  vector
    has.x <- .hasSlot(x, "x")## has "x" slot
    m.any <- (mode == "any")
    if(m.any)
	mode <- if(has.x) mode(x@x) else "logical"
    else if(has.x) # is.<mode>() is much faster than inherits() | is():
        xxOk <- switch(mode,
		       "double" = is.double(x@x),
		       "logical" = is.logical(x@x),
		       "integer" = is.integer(x@x),
		       "complex" = is.complex(x@x),
		       ## otherwise (does not happen with default 'mode'):
		       inherits(x@x, mode))
    r <- vector(mode, x@length)
    r[x@i] <-
	if(has.x) {
	    if(m.any || xxOk) x@x else as(x@x, mode)
	} else TRUE
    r
}

newSpV <- function(class, x, i, length, drop0 = TRUE, checkSort = TRUE)
{
    if(has.x <- !missing(x)) {
	if(length(x) == 1 && (li <- length(i)) != 1) ## recycle x :
	    x <- rep.int(x, li)
	if(drop0 && isTRUE(any(x0 <- x == 0))) {
	    keep <- is.na(x) | !x0
	    x <- x[keep]
	    i <- i[keep]
	}
    }
    if(checkSort && is.unsorted(i)) {
	ii <- sort.list(i)
	if(has.x) x <- x[ii]
	i <- i[ii]
    }
    if(has.x)
	new(class, x = x, i = i, length = length)
    else
	new(class,        i = i, length = length)
}

newSpVec <- function(class, x, prev)
    newSpV(class = class, x = x, i = prev@i, length = prev@length)

sparseVector <- function(x, i, length)
    newSpV(class = paste0(if(missing(x)) "n" else .M.kind(x), "sparseVector"),
           x = x, i = i, length = length)