1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
|
\documentclass{article}
%
\usepackage{myVignette}
\usepackage[authoryear,round]{natbib}
\bibliographystyle{plainnat}
\newcommand{\noFootnote}[1]{{\small (\textit{#1})}}
\newcommand{\myOp}[1]{{$\left\langle\ensuremath{#1}\right\rangle$}}
%% vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
%%\VignetteIndexEntry{Design Issues in Matrix package Development}
%%\VignetteDepends{Matrix,utils}
\SweaveOpts{engine=R,eps=FALSE,pdf=TRUE,width=5,height=3,strip.white=true,keep.source=TRUE}
% ^^^^^^^^^^^^^^^^
\title{Design Issues in Matrix package Development}
\author{Martin Maechler and Douglas Bates\\R Core Development Team
\\\email{maechler@stat.math.ethz.ch}, \email{bates@r-project.org}}
\date{Spring 2008; Aug~2022 ({\tiny typeset on \tiny\today})}
%
\begin{document}
\maketitle
\begin{abstract}
This is a (\textbf{currently very incomplete}) write-up of the many smaller and
larger design decisions we have made in organizing functionalities in the
Matrix package.
Classes: There's a rich hierarchy of matrix classes, which you can
visualize as a set of trees whose inner (and ``upper'') nodes are
\emph{virtual} classes and only the leaves are non-virtual ``actual'' classes.
Functions and Methods:
- setAs()
- others
\end{abstract}
%% Note: These are explained in '?RweaveLatex' :
<<preliminaries, echo=FALSE>>=
options(width=75)
library(utils) # for R_DEFAULT_PACKAGES=NULL
library(Matrix)
@
\section{The Matrix class structures}
\label{sec:classes}
Take Martin's DSC 2007 talk to depict the Matrix class hierarchy;
available from {\small
\url{https://stat.ethz.ch/~maechler/R/DSC-2007_MatrixClassHierarchies.pdf}} .
% ~/R/Meetings-Kurse-etc/2007-DSC/talk.tex Matrix-classes.Rnw
--- --- --- %% \hrule[1pt]{\textwidth}
From far, there are \textbf{three} separate class hierarchies, and every \pkg{Matrix} package
matrix has an actual (or ``factual'') class inside these three hierarchies:
% ~/R/Meetings-Kurse-etc/2007-DSC/Matrix-classes.Rnw
More formally, we have three (\ 3 \ ) main ``class classifications'' for our Matrices, i.e.,\\
three ``orthogonal'' partitions of ``Matrix space'', and every Matrix
object's class corresponds to an \emph{intersection} of these three partitions;
i.e., in R's S4 class system: We have three independent inheritance
schemes for every Matrix, and each such Matrix class is simply defined to
\texttt{contain} three \emph{virtual} classes (one from each partitioning
scheme), e.g,
The three partioning schemes are
\begin{enumerate}
\item Content \texttt{type}: Classes \code{dMatrix}, \code{lMatrix},
\code{nMatrix},
(\code{iMatrix}, \code{zMatrix}) for entries of type \textbf{d}ouble,
\textbf{l}ogical, patter\textbf{n} (and not yet \textbf{i}nteger and
complex) Matrices.
\code{nMatrix} only stores the
\emph{location} of non-zero matrix entries (where as logical Matrices
can also have \code{NA} entries!)
\item structure: general, triangular, symmetric, diagonal Matrices
\item sparsity: \code{denseMatrix}, \code{sparseMatrix}
\end{enumerate}
For example in the most used sparseMatrix class, \code{"dgCMatrix"},
the three initial letters \code{dgC} each codes for one of the three hierarchies:
\begin{description}
\item{d: } \textbf{d}ouble
\item{g: } \textbf{g}eneral
\item{C: } \textbf{C}sparseMatrix, where \textbf{C} is for \textbf{C}olumn-compressed.
\end{description}
Part of this is visible from printing \code{getClass("\emph{<classname>}")}:
<<dgC-ex>>=
getClass("dgCMatrix")
@
Another example is the \code{"nsTMatrix"} class, where \code{nsT} stands for
\begin{description}
\item{n: } \textbf{n} is for ``patter\textbf{n}'', boolean content where
only the \emph{locations} of the non-zeros need to be stored.
\item{t: } \textbf{t}riangular matrix; either \textbf{U}pper, or \textbf{L}ower.
\item{T: } \textbf{T}sparseMatrix, where \textbf{T} is for \textbf{T}riplet,
the simplest but least efficient way to store a sparse matrix.
\end{description}
From R itself, via \code{getClass(.)}:
<<dgC-ex>>=
getClass("ntTMatrix")
@
\subsection{Diagonal Matrices}
\label{ssec:diagMat}
The class of diagonal matrices is worth mentioning for several reasons.
First, we have wanted such a class, because \emph{multiplication}
methods are particularly simple with diagonal matrices.
The typical constructor is \Rfun{Diagonal} whereas the accessor
(as for traditional matrices), \Rfun{diag} simply returns the
\emph{vector} of diagonal entries:
<<diag-class>>=
(D4 <- Diagonal(4, 10*(1:4)))
str(D4)
diag(D4)
@
We can \emph{modify} the diagonal in the traditional way
(via method definition for \Rfun{diag<-}):
<<diag-2>>=
diag(D4) <- diag(D4) + 1:4
D4
@
Note that \textbf{unit-diagonal} matrices (the identity matrices of linear algebra)
with slot \code{diag = "U"} can have an empty \code{x} slot, very
analogously to the unit-diagonal triangular matrices:
<<unit-diag>>=
str(I3 <- Diagonal(3)) ## empty 'x' slot
getClass("diagonalMatrix") ## extending "sparseMatrix"
@
Originally, we had implemented diagonal matrices as \emph{dense} rather than sparse
matrices. After several years it became clear that this had not been
helpful really both from a user and programmer point of view.
So now, indeed the \code{"diagonalMatrix"} class does also extend
\code{"sparseMatrix"}, i.e., is a subclass of it.
However, we do \emph{not} store explicitly
where the non-zero entries are, and the class does \emph{not} extend any of
the typical sparse matrix classes, \code{"CsparseMatrix"},
\code{"TsparseMatrix"}, or \code{"RsparseMatrix"}.
Rather, the \code{diag()}onal (vector) is the basic part of such a matrix,
and this is simply the \code{x} slot unless the \code{diag} slot is \code{"U"},
the unit-diagonal case, which is the identity matrix.
Further note, e.g., from the \code{?$\,$Diagonal} help page, that we provide
(low level) utility function
\code{.sparseDiagonal()} with wrappers
\code{.symDiagonal()} and \code{.trDiagonal()} which will provide diagonal
matrices inheriting from \code{"CsparseMatrix"} which may be advantageous
in \emph{some cases}, but less efficient in others, see the help page.
\section{Matrix Transformations}
\label{sec:trafos}
\subsection{Coercions between Matrix classes}
\label{ssec:coerce}
You may need to transform Matrix objects into specific shape (triangular,
symmetric), content type (double, logical, \dots) or storage structure
(dense or sparse).
Every useR should use \code{as(x, <superclass>)} to this end, where
\code{<superclass>} is a \emph{virtual} Matrix super class, such as
\code{"triangularMatrix"} \code{"dMatrix"}, or \code{"sparseMatrix"}.
In other words, the user should \emph{not} coerce directly to a specific
desired class such as \code{"dtCMatrix"}, even though that may
occasionally work as well.
Here is a set of rules to which the Matrix developers and the users
should typically adhere:
\begin{description}
\item[Rule~1]: \code{as(M, "matrix")} should work for \textbf{all} Matrix
objects \code{M}.
\item[Rule~2]: \code{Matrix(x)} should also work for matrix like
objects \code{x} and always return a ``classed'' Matrix.
Applied to a \code{"matrix"} object \code{m}, \code{M. <- Matrix(m)} can be
considered a kind of inverse of \code{m <- as(M, "matrix")}.
For sparse matrices however, \code{M.} well be a
\code{CsparseMatrix}, and it is often ``more structured'' than \code{M},
e.g.,
<<Matrix-ex>>=
(M <- spMatrix(4,4, i=1:4, j=c(3:1,4), x=c(4,1,4,8))) # dgTMatrix
m <- as(M, "matrix")
(M. <- Matrix(m)) # dsCMatrix (i.e. *symmetric*)
@
\item[Rule~3]: All the following coercions to \emph{virtual} matrix
classes should work:\\
\begin{enumerate}
\item \code{as(m, "dMatrix")}
\item \code{as(m, "lMatrix")}
\item \code{as(m, "nMatrix")}
\item \code{as(m, "denseMatrix")}
\item \code{as(m, "sparseMatrix")}
\item \code{as(m, "generalMatrix")}
\end{enumerate}
whereas the next ones should work under some assumptions:
\begin{enumerate}
\item \code{as(m1, "triangularMatrix")} \\
should work when \code{m1} is a triangular matrix, i.e. the upper or
lower triangle of \code{m1} contains only zeros.
\item \code{as(m2, "symmetricMatrix")}
should work when \code{m2} is a symmetric matrix in the sense of
\code{isSymmetric(m2)} returning \code{TRUE}.
Note that this is typically equivalent to something like
\code{isTRUE(all.equal(m2, t(m2)))}, i.e., the lower and upper
triangle of the matrix have to be equal \emph{up to small
numeric fuzz}.
\end{enumerate}
\end{description}
\section{Session Info}
<<sessionInfo, results=tex>>=
toLatex(sessionInfo())
@
%not yet
%\bibliography{Matrix}
\end{document}
|