File: dpo-test.R

package info (click to toggle)
rmatrix 1.7-4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,096 kB
  • sloc: ansic: 97,203; makefile: 280; sh: 165
file content (182 lines) | stat: -rw-r--r-- 6,407 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
### Testing positive definite matrices

## for R_DEFAULT_PACKAGES=NULL :
library(stats)
library(utils)

library(Matrix)
source(system.file("test-tools.R", package = "Matrix"))# identical3() etc
cat("doExtras:",doExtras,"\n")

h9 <- Hilbert(9)
stopifnot(c(0,0) == dim(Hilbert(0)),
          c(9,9) == dim(h9),
	  identical(h9@factors, list()))
str(h9)# no 'factors'		32b:	-96.73694669	2.08e-8
assert.EQ.(c(determinant(h9)$modulus),	-96.7369487, tol = 8e-8)
##				64b:	-96.73695078	2.15e-8 then 6.469e-8

## determinant() now working via chol(): ==> h9 now has factorization
stopifnot(names(h9@factors) == "Cholesky",
          identical(ch9 <- Cholesky(h9, perm = FALSE), h9@factors$Cholesky))
str(f9 <- as(ch9, "dtrMatrix"))
round(f9, 3) ## round() preserves 'triangular' !
stopifnot(all.equal(rcond(h9), 9.0938e-13),
          all.equal(rcond(f9), 9.1272e-7, tolerance = 1e-6))# more precision fails
options(digits=4)
(cf9 <- crossprod(f9))# looks the same as  h9 :
assert.EQ.mat(h9, as(cf9,"matrix"), tol=1e-15)

h9. <- round(h9, 2) # dpo->dsy
h9p <- pack(h9)
ch9p <- Cholesky(h9p, perm = FALSE)
stopifnot(identical(ch9p, h9p@factors$pCholesky),
	  identical(names(h9p@factors), c("Cholesky", "pCholesky")))
h4  <- h9.[1:4, 1:4] # this and the next
h9.[1,1] <- 10       # had failed in 0.995-14
h9p[1,1] <- 10
stopifnotValid(h9., "symmetricMatrix")
stopifnotValid(h9p, "symmetricMatrix")
stopifnotValid(h4,  "symmetricMatrix")

h9p[1,2] <- 99
stopifnot(class(h9p) == "dgeMatrix", h9p[1,1:2] == c(10,99))

str(h9p <- as(h9, "dppMatrix"))# {again}
h6 <- h9[1:6,1:6]
stopifnot(all(h6 == Hilbert(6)), length(h6@factors) == 0)
stopifnotValid(th9p <- t(h9p), "dppMatrix")
stopifnotValid(h9p@factors$Cholesky,"Cholesky")
H6  <- as(h6, "packedMatrix")
pp6 <- as(H6, "dppMatrix")
po6 <- as(pp6, "dpoMatrix")
hs <- as(h9p, "dspMatrix")
stopifnot(names(H6@factors)  == "pCholesky",
          names(pp6@factors) == "pCholesky",
          names(hs@factors)  == "Cholesky") # for now
chol(hs) # and that is cached in 'hs' too :
stopifnot(names(hs@factors) %in% c("Cholesky","pCholesky"),
	  all.equal(h9, crossprod(as(hs@factors$pCholesky, "dtpMatrix")),
                    tolerance = 1e-13),
	  all.equal(h9, crossprod(as(hs@factors$ Cholesky, "dtrMatrix")),
                    tolerance = 1e-13))

hs@x <- 1/h9p@x # is not pos.def. anymore
validObject(hs) # "but" this does not check
stopifnot(diag(hs) == seq(1, by = 2, length.out = 9))

s9 <- solve(h9p, seq(nrow(h9p)))
signif(t(s9)/10000, 4)# only rounded numbers are platform-independent
(I9 <- h9p %*% s9)
m9 <- as.matrix(1:9)
stopifnot(all.equal(m9, as(I9, "matrix"), tolerance = 2e-9))

### Testing nearPD() --- this is partly in  ../man/nearPD.Rd :
pr <- Matrix(c(1,     0.477, 0.644, 0.478, 0.651, 0.826,
               0.477, 1,     0.516, 0.233, 0.682, 0.75,
               0.644, 0.516, 1,     0.599, 0.581, 0.742,
               0.478, 0.233, 0.599, 1,     0.741, 0.8,
               0.651, 0.682, 0.581, 0.741, 1,     0.798,
               0.826, 0.75,  0.742, 0.8,   0.798, 1),
             nrow = 6, ncol = 6)

nL <-
    list(r   = nearPD(pr, conv.tol = 1e-7), # default
	 r.1 = nearPD(pr, conv.tol = 1e-7,		corr = TRUE),
	 rs  = nearPD(pr, conv.tol = 1e-7, doDykstra=FALSE),
	 rs1 = nearPD(pr, conv.tol = 1e-7, doDykstra=FALSE, corr = TRUE),
	 rH  = nearPD(pr, conv.tol = 1e-15),
         rH.1= nearPD(pr, conv.tol = 1e-15, corr = TRUE))

sapply(nL, `[`, c("iterations", "normF"))

allnorms <- function(d) vapply(c("1","I","F","M","2"),
                               norm, x = d, double(1))

## "F" and "M" distances are larger for the (corr=TRUE) constrained:
100 * sapply(nL, function(rr) allnorms((pr - rr  $ mat)))

## But indeed, the 'corr = TRUE' constraint yield a better solution,
## if you need the constraint :  cov2cor() does not just fix it up :
100 * (nn <- sapply(nL, function(rr) allnorms((pr - cov2cor(rr  $ mat)))))

stopifnot(
all.equal(nn["1",],
          c(r =0.0999444286984696, r.1= 0.0880468666522317,
            rs=0.0999444286984702, rs1= 0.0874614179943388,
            rH=0.0999444286984696, rH.1=0.0880468927726625),
          tolerance=1e-9))

nr <- nL $rH.1 $mat
stopifnot(
    all.equal(nr[lower.tri(nr)],
	      c(0.4877861230299, 0.6429309061748, 0.4904554299278, 0.6447150779852,
		0.8082100656035, 0.514511537243, 0.2503412693503, 0.673249718642,
		0.7252316891977, 0.5972811755863, 0.5818673040157, 0.7444549621769,
		0.7308954865819, 0.7713984381710, 0.8124321235679),
	      tolerance = 1e-9))
showProc.time()


suppressWarnings(RNGversion("3.5.0")); set.seed(27)
m9 <- h9 + rnorm(9^2)/1000 ; m9 <- (m9 + t(m9))/2
nm9 <- nearPD(m9)
showProc.time()

nRep <- if(doExtras) 50 else 4
CPU <- 0
for(M in c(5, 12))
    for(i in 1:nRep) {
	m <- matrix(round(rnorm(M^2),2), M, M)
	m <- m + t(m)
	diag(m) <- pmax(0, diag(m)) + 1
	m <- cov2cor(m)
	CPU <- CPU + system.time(n.m <- nearPD(m, base.matrix=TRUE))[1]
	X <- n.m$mat
	stopifnot(all.equal(X, (X + t(X))/2, tolerance = 8*.Machine$double.eps),
		  all.equal(eigen(n.m$mat, only.values=TRUE)$values,
			    n.m$eigenvalues, tolerance = 4e-8))
    }
cat('Time elapsed for ',nRep, 'nearPD(): ', CPU,'\n')
showProc.time()

## cov2cor()
m <- diag(6:1) %*% as(pr,"matrix") %*% diag(6:1) # so we can "vector-index"
m[upper.tri(m)] <- 0
ltm <- which(lower.tri(m))
ne <- length(ltm)
set.seed(17)
m[ltm[sample(ne, 3/4*ne)]] <- 0
m <- (m + t(m))/2 # now is a covariance matrix with many 0 entries
(spr <- Matrix(m))
cspr <- cov2cor(spr)
ev <- eigen(cspr, only.values = TRUE)$values
stopifnot(is(spr, "dsCMatrix"),
          is(cspr,"dsCMatrix"),
          all.equal(ev, c(1.5901626099,  1.1902658504, 1, 1,
                          0.80973414959, 0.40983739006), tolerance=1e-10))

x <- c(2,1,1,2)
mM <- Matrix(x, 2,2, dimnames=rep( list(c("A","B")), 2))# dsy
mM
stopifnot(length(mM@factors)== 0)
(po <- as(mM, "dpoMatrix")) # still has dimnames
mm <- as(mM, "matrix")
msy <- as(mm, "symmetricMatrix")
stopifnot(Qidentical(mM, msy),
	  length(mM @factors)== 1,
	  length(msy@factors)== 0)

c1 <- as(mm, "corMatrix")
c2 <- as(mM, "corMatrix")
c3 <- as(po, "corMatrix")
(co.x <- matrix(x/2, 2,2))
checkMatrix(c1)
assert.EQ.mat(c1, co.x)
assert.EQ.mat(c2, co.x) # failed in Matrix 0.999375-9, because of
## the wrong automatic "dsyMatrix" -> "corMatrix" coerce method
stopifnot(identical(dimnames(c1), dimnames(mM)),
	  all.equal(c1, c3, tolerance =1e-15))

showProc.time()