1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
### Testing positive definite matrices
## for R_DEFAULT_PACKAGES=NULL :
library(stats)
library(utils)
library(Matrix)
source(system.file("test-tools.R", package = "Matrix"))# identical3() etc
cat("doExtras:",doExtras,"\n")
h9 <- Hilbert(9)
stopifnot(c(0,0) == dim(Hilbert(0)),
c(9,9) == dim(h9),
identical(h9@factors, list()))
str(h9)# no 'factors' 32b: -96.73694669 2.08e-8
assert.EQ.(c(determinant(h9)$modulus), -96.7369487, tol = 8e-8)
## 64b: -96.73695078 2.15e-8 then 6.469e-8
## determinant() now working via chol(): ==> h9 now has factorization
stopifnot(names(h9@factors) == "Cholesky",
identical(ch9 <- Cholesky(h9, perm = FALSE), h9@factors$Cholesky))
str(f9 <- as(ch9, "dtrMatrix"))
round(f9, 3) ## round() preserves 'triangular' !
stopifnot(all.equal(rcond(h9), 9.0938e-13),
all.equal(rcond(f9), 9.1272e-7, tolerance = 1e-6))# more precision fails
options(digits=4)
(cf9 <- crossprod(f9))# looks the same as h9 :
assert.EQ.mat(h9, as(cf9,"matrix"), tol=1e-15)
h9. <- round(h9, 2) # dpo->dsy
h9p <- pack(h9)
ch9p <- Cholesky(h9p, perm = FALSE)
stopifnot(identical(ch9p, h9p@factors$pCholesky),
identical(names(h9p@factors), c("Cholesky", "pCholesky")))
h4 <- h9.[1:4, 1:4] # this and the next
h9.[1,1] <- 10 # had failed in 0.995-14
h9p[1,1] <- 10
stopifnotValid(h9., "symmetricMatrix")
stopifnotValid(h9p, "symmetricMatrix")
stopifnotValid(h4, "symmetricMatrix")
h9p[1,2] <- 99
stopifnot(class(h9p) == "dgeMatrix", h9p[1,1:2] == c(10,99))
str(h9p <- as(h9, "dppMatrix"))# {again}
h6 <- h9[1:6,1:6]
stopifnot(all(h6 == Hilbert(6)), length(h6@factors) == 0)
stopifnotValid(th9p <- t(h9p), "dppMatrix")
stopifnotValid(h9p@factors$Cholesky,"Cholesky")
H6 <- as(h6, "packedMatrix")
pp6 <- as(H6, "dppMatrix")
po6 <- as(pp6, "dpoMatrix")
hs <- as(h9p, "dspMatrix")
stopifnot(names(H6@factors) == "pCholesky",
names(pp6@factors) == "pCholesky",
names(hs@factors) == "Cholesky") # for now
chol(hs) # and that is cached in 'hs' too :
stopifnot(names(hs@factors) %in% c("Cholesky","pCholesky"),
all.equal(h9, crossprod(as(hs@factors$pCholesky, "dtpMatrix")),
tolerance = 1e-13),
all.equal(h9, crossprod(as(hs@factors$ Cholesky, "dtrMatrix")),
tolerance = 1e-13))
hs@x <- 1/h9p@x # is not pos.def. anymore
validObject(hs) # "but" this does not check
stopifnot(diag(hs) == seq(1, by = 2, length.out = 9))
s9 <- solve(h9p, seq(nrow(h9p)))
signif(t(s9)/10000, 4)# only rounded numbers are platform-independent
(I9 <- h9p %*% s9)
m9 <- as.matrix(1:9)
stopifnot(all.equal(m9, as(I9, "matrix"), tolerance = 2e-9))
### Testing nearPD() --- this is partly in ../man/nearPD.Rd :
pr <- Matrix(c(1, 0.477, 0.644, 0.478, 0.651, 0.826,
0.477, 1, 0.516, 0.233, 0.682, 0.75,
0.644, 0.516, 1, 0.599, 0.581, 0.742,
0.478, 0.233, 0.599, 1, 0.741, 0.8,
0.651, 0.682, 0.581, 0.741, 1, 0.798,
0.826, 0.75, 0.742, 0.8, 0.798, 1),
nrow = 6, ncol = 6)
nL <-
list(r = nearPD(pr, conv.tol = 1e-7), # default
r.1 = nearPD(pr, conv.tol = 1e-7, corr = TRUE),
rs = nearPD(pr, conv.tol = 1e-7, doDykstra=FALSE),
rs1 = nearPD(pr, conv.tol = 1e-7, doDykstra=FALSE, corr = TRUE),
rH = nearPD(pr, conv.tol = 1e-15),
rH.1= nearPD(pr, conv.tol = 1e-15, corr = TRUE))
sapply(nL, `[`, c("iterations", "normF"))
allnorms <- function(d) vapply(c("1","I","F","M","2"),
norm, x = d, double(1))
## "F" and "M" distances are larger for the (corr=TRUE) constrained:
100 * sapply(nL, function(rr) allnorms((pr - rr $ mat)))
## But indeed, the 'corr = TRUE' constraint yield a better solution,
## if you need the constraint : cov2cor() does not just fix it up :
100 * (nn <- sapply(nL, function(rr) allnorms((pr - cov2cor(rr $ mat)))))
stopifnot(
all.equal(nn["1",],
c(r =0.0999444286984696, r.1= 0.0880468666522317,
rs=0.0999444286984702, rs1= 0.0874614179943388,
rH=0.0999444286984696, rH.1=0.0880468927726625),
tolerance=1e-9))
nr <- nL $rH.1 $mat
stopifnot(
all.equal(nr[lower.tri(nr)],
c(0.4877861230299, 0.6429309061748, 0.4904554299278, 0.6447150779852,
0.8082100656035, 0.514511537243, 0.2503412693503, 0.673249718642,
0.7252316891977, 0.5972811755863, 0.5818673040157, 0.7444549621769,
0.7308954865819, 0.7713984381710, 0.8124321235679),
tolerance = 1e-9))
showProc.time()
suppressWarnings(RNGversion("3.5.0")); set.seed(27)
m9 <- h9 + rnorm(9^2)/1000 ; m9 <- (m9 + t(m9))/2
nm9 <- nearPD(m9)
showProc.time()
nRep <- if(doExtras) 50 else 4
CPU <- 0
for(M in c(5, 12))
for(i in 1:nRep) {
m <- matrix(round(rnorm(M^2),2), M, M)
m <- m + t(m)
diag(m) <- pmax(0, diag(m)) + 1
m <- cov2cor(m)
CPU <- CPU + system.time(n.m <- nearPD(m, base.matrix=TRUE))[1]
X <- n.m$mat
stopifnot(all.equal(X, (X + t(X))/2, tolerance = 8*.Machine$double.eps),
all.equal(eigen(n.m$mat, only.values=TRUE)$values,
n.m$eigenvalues, tolerance = 4e-8))
}
cat('Time elapsed for ',nRep, 'nearPD(): ', CPU,'\n')
showProc.time()
## cov2cor()
m <- diag(6:1) %*% as(pr,"matrix") %*% diag(6:1) # so we can "vector-index"
m[upper.tri(m)] <- 0
ltm <- which(lower.tri(m))
ne <- length(ltm)
set.seed(17)
m[ltm[sample(ne, 3/4*ne)]] <- 0
m <- (m + t(m))/2 # now is a covariance matrix with many 0 entries
(spr <- Matrix(m))
cspr <- cov2cor(spr)
ev <- eigen(cspr, only.values = TRUE)$values
stopifnot(is(spr, "dsCMatrix"),
is(cspr,"dsCMatrix"),
all.equal(ev, c(1.5901626099, 1.1902658504, 1, 1,
0.80973414959, 0.40983739006), tolerance=1e-10))
x <- c(2,1,1,2)
mM <- Matrix(x, 2,2, dimnames=rep( list(c("A","B")), 2))# dsy
mM
stopifnot(length(mM@factors)== 0)
(po <- as(mM, "dpoMatrix")) # still has dimnames
mm <- as(mM, "matrix")
msy <- as(mm, "symmetricMatrix")
stopifnot(Qidentical(mM, msy),
length(mM @factors)== 1,
length(msy@factors)== 0)
c1 <- as(mm, "corMatrix")
c2 <- as(mM, "corMatrix")
c3 <- as(po, "corMatrix")
(co.x <- matrix(x/2, 2,2))
checkMatrix(c1)
assert.EQ.mat(c1, co.x)
assert.EQ.mat(c2, co.x) # failed in Matrix 0.999375-9, because of
## the wrong automatic "dsyMatrix" -> "corMatrix" coerce method
stopifnot(identical(dimnames(c1), dimnames(mM)),
all.equal(c1, c3, tolerance =1e-15))
showProc.time()
|