File: factorizing.R

package info (click to toggle)
rmatrix 1.7-4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,096 kB
  • sloc: ansic: 97,203; makefile: 280; sh: 165
file content (760 lines) | stat: -rw-r--r-- 28,537 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
#### Matrix Factorizations  --- of all kinds

## for R_DEFAULT_PACKAGES=NULL :
library(stats)
library(utils)

library(Matrix)
source(system.file("test-tools.R", package = "Matrix"))# identical3() etc
options(warn = 0)
is64bit <- .Machine$sizeof.pointer == 8
cat("doExtras:", doExtras,";  is64bit:", is64bit, "\n")

### "sparseQR" : Check consistency of methods
##   --------
data(KNex, package = "Matrix")
mm <- KNex$mm
y  <- KNex$y
stopifnot(is((Y <- Matrix(y)), "dgeMatrix"))
md <- as(mm, "matrix")                  # dense

(cS <- system.time(Sq <- qr(mm))) # 0.009
(cD <- system.time(Dq <- qr(md))) # 0.499 (lynne, 2014 f); 1.04 lynne 2019 ?????
cD[1] / cS[1] # dense is  much ( ~ 100--170 times) slower

## chkQR() in ../inst/test-tools-1.R ;

if(doExtras) { ## ~ 20 sec {"large" example}   + 2x qr.R() warnings
    cat("chkQR( <KNex> ) .. takes time .. ")
    system.time(chkQR(mm, y=y, a.qr = Sq, verbose=TRUE))
    system.time(chkQR(md, y=y, a.qr = Dq, verbose=TRUE))
    cat(" done: [Ok]\n")
}

## consistency of results dense and sparse
##	chk.qr.D.S() and  checkQR.DS.both() >>> ../inst/test-tools-Matrix.R
chk.qr.D.S(Dq, Sq, y, Y)

## Another small example with pivoting (and column name "mess"):
suppressWarnings(RNGversion("3.5.0")); set.seed(1)
X <- rsparsematrix(9,5, 1/4, dimnames=list(paste0("r", 1:9), LETTERS[1:5]))
qX <- qr(X); qd <- qr(as(X, "matrix"))
## are the same (now, *including* names):
assert.EQ(print(qr.coef(qX, 1:9)), qr.coef(qd, 1:9), tol=1e-14)
chk.qr.D.S(d. = qd, s. = qX, y = 1:9)



## rank deficient QR cases: ---------------

## From Simon (15 Jul 2009) + dimnames (11 May 2015)
set.seed(10)
a <- matrix(round(10 * runif(90)), 10,9, dimnames =
            list(LETTERS[1:10], paste0("c", 1:9)))
a[a < 7.5] <- 0
(A <- Matrix(a))# first column = all zeros
qD <- chkQR(a, giveRE=TRUE) ## using base qr
qS <- chkQR(A, giveRE=TRUE) ## using Matrix "sparse qr" -- "structurally rank deficient!
validObject(qS)# with the validity now (2012-11-18) -- ok, also for "bad" case
## Here, have illegal access  Up[-1] in ../src/cs.c
try( ## After patch (2016-10-04 - *NOT* committed), this fails
    ## definitely "fails" (with good singularity message) after c3194 (cs.c):
chk.qr.D.S(qD, qS, y = 10 + 1:nrow(A), force=TRUE)# 6 warnings: "structurally rank deficient"
)
try( ## NOTE: *Both* checks  currently fail here:
    chkQR(A, Qinv.chk=TRUE, QtQ.chk=TRUE)
)


## Larger Scale random testing
oo <- options(Matrix.quiet.qr.R = TRUE, Matrix.verbose = TRUE, nwarnings = 1e4)
set.seed(101)

quiet <- doExtras
for(N in 1:(if(doExtras) 1008 else 24)) {
    A <- rsparsematrix(8,5, nnz = rpois(1, lambda=16))
    cat(sprintf(if(quiet) "%d " else "%4d -", N)); if(quiet && N %% 50 == 0) cat("\n")
    checkQR.DS.both(A, Qinv.chk= NA, QtQ.chk=NA, quiet=quiet,
    ##                          --- => FALSE if struct. rank deficient
		    giveRE = FALSE, tol = 1e-12)
    ## with doExtras = TRUE, 64bit (F34, R 4.3.0-dev. 2022-05): seen 8.188e-13
}
summary(warnings())

## Look at single "hard" cases: --------------------------------------

## This is *REALLY* nice and small :
A0 <- new("dgCMatrix", Dim = 4:3, i = c(0:3, 3L), p = c(0L, 3:5), x = rep(1,5))
A0
checkQR.DS.both(A0, Qinv.chk = FALSE, QtQ.chk=FALSE)
##                                           ----- *both* still needed :
try( checkQR.DS.both(A0,  TRUE, FALSE) )
try( checkQR.DS.both(A0, FALSE,  TRUE) )

## and the same when dropping the first row  { --> 3 x 3 }:
A1 <- A0[-1 ,]
checkQR.DS.both(A1, Qinv.chk = FALSE, QtQ.chk=FALSE)
##                                           ----- *both* still needed :
try( checkQR.DS.both(A1,  TRUE, FALSE) )
try( checkQR.DS.both(A1, FALSE,  TRUE) )


qa <- qr(as(A0,"matrix"))
qA <- qr(A0) # -> message: ".. Matrix structurally rank deficient"

drop0(crossprod( Qd <- qr.Q(qa) ), 1e-15) # perfect = diag( 3 )
drop0(crossprod( Qs <- qr.Q(qA) ), 1e-15) # R[3,3] == 0 -- OOPS!
## OTOH, qr.R() is fine, as checked in the checkQR.DS.both(A0, *) above


## zero-row *and* zero-column :
(A2 <- new("dgCMatrix", i = c(0L, 1L, 4L, 7L, 5L, 2L, 4L)
           , p = c(0L, 3L, 4L, 4L, 5L, 7L)
           , Dim = c(8L, 5L)
           , x = c(0.92, 1.06, -1.74, 0.74, 0.19, -0.63, 0.68)))
checkQR.DS.both(A2, Qinv.chk = FALSE, QtQ.chk=FALSE)
##                                           ----- *both* still needed :
try( checkQR.DS.both(A2,  TRUE, FALSE) )
try( checkQR.DS.both(A2, FALSE,  TRUE) )


## Case of *NO* zero-row or zero-column:
(A3 <- new("dgCMatrix", Dim = 6:5
           , i = c(0L, 2L, 4L, 0L, 1L, 5L, 1L, 3L, 0L)
           , p = c(0L, 1L, 3L, 6L, 8L, 9L)
           , x = c(40, -54, -157, -28, 75, 166, 134, 3, -152)))
checkQR.DS.both(A3, Qinv.chk = FALSE, QtQ.chk=FALSE)
##                                           ----- *both* still needed :
try( checkQR.DS.both(A3,  TRUE, FALSE) )
try( checkQR.DS.both(A3, FALSE,  TRUE) )



(A4 <- new("dgCMatrix", Dim = c(7L, 5L)
           , i = c(1:2, 4L, 6L, 1L, 5L, 0:3, 0L, 2:4)
           , p = c(0L, 4L, 6L, 10L, 10L, 14L)
           , x = c(9, -8, 1, -9, 1, 10, -1, -2, 6, 14, 10, 2, 12, -9)))
checkQR.DS.both(A4, Qinv.chk = FALSE, QtQ.chk=FALSE)
##                                           ----- *both* still needed :
try( checkQR.DS.both(A4,  TRUE, FALSE) )
try( checkQR.DS.both(A4, FALSE,  TRUE) )

(A5 <- new("dgCMatrix", Dim = c(4L, 4L)
           , i = c(2L, 2L, 0:1, 0L, 2:3), p = c(0:2, 4L, 7L)
           , x = c(48, 242, 88, 18, -167, -179, 18)))
checkQR.DS.both(A5, Qinv.chk = FALSE, QtQ.chk=FALSE)
##                                           ----- *both* still needed :
try( checkQR.DS.both(A5,  TRUE, FALSE) )
try( checkQR.DS.both(A5, FALSE,  TRUE) )


quiet <- doExtras
for(N in 1:(if(doExtras) 2^12 else 128)) {
    A <- round(100*rsparsematrix(5,3, nnz = min(15,rpois(1, lambda=10))))
    if(any(apply(A, 2, function(x) all(x == 0)))) ## "column of all 0"
        next
    cat(sprintf(if(quiet) "%d " else "%4d -", N)); if(quiet && N %% 50 == 0) cat("\n")
    checkQR.DS.both(A, Qinv.chk=NA, giveRE=FALSE, tol = 1e-12, quiet = quiet)
    ##                         --- => FALSE if struct. rank deficient
}

summary(warnings())


options(oo)



### "denseLU"

## Testing expansions of factorizations {was ./expand.R, then in simple.R }
## new: [m x n]  where m and n  may differ
x. <- c(2^(0:5),9:1,-3:8, round(sqrt(0:16)))
set.seed(1)
for(nnn in 1:100) {
    y <- sample(x., replace=TRUE)
    m <- sample(2:6, 1)
    n <- sample(2:7, 1)
    x <- matrix(seq_len(m*n), m,n)
    lux <- lu(x)# occasionally a warning about exact singularity
    xx <- with(expand(lux), (P %*% L %*% U))
    print(dim(xx))
    assert.EQ.mat(xx, x, tol = 16*.Machine$double.eps)
}

### "sparseLU"
por1 <- readMM(system.file("external/pores_1.mtx", package = "Matrix"))
lu1 <- lu(por1)
pm <- as(por1, "CsparseMatrix")
(pmLU <- lu(pm)) # -> show(<MatrixFactorization>)
xp <- expand(pmLU)
## permute rows and columns of original matrix
ppm <- pm[pmLU@p + 1:1, pmLU@q + 1:1]
Ppm <- pmLU@L %*% pmLU@U
## identical only as long as we don't keep the original class info:
stopifnot(identical3(lu1, pmLU, pm@factors$sparseLU),# TODO === por1@factors$LU
	  identical(ppm, with(xp, P %*% pm %*% t(Q))),
	  sapply(xp, is, class2="Matrix"))

Ipm <- solve(pm, sparse=FALSE)
Spm <- solve(pm, sparse=TRUE)  # is not sparse at all, here
assert.EQ.Mat(Ipm, Spm, giveRE=TRUE, tol = 1e-13)# seen 7.36e-15 only on 32-bit
stopifnot(abs(as.vector(solve(Diagonal(30, x=10) %*% pm) / Ipm) - 1/10) < 1e-7,
	  abs(as.vector(solve(rep.int(4, 30)	  *  pm) / Ipm) - 1/ 4) < 1e-7)

## these two should be the same, and `are' in some ways:
assert.EQ.mat(ppm, as(Ppm, "matrix"), tol = 1e-14, giveRE=TRUE)
## *however*
length(ppm@x)# 180
length(Ppm@x)# 317 !
table(Ppm@x == 0)# (194, 123) - has 123 "zero" and 14 ``almost zero" entries

##-- determinant() and det() --- working via LU ---
m <- matrix(c(0, NA, 0, NA, NA, 0, 0, 0, 1), 3,3)
m0 <- rbind(0,cbind(0,m))
M <- as(m,"Matrix"); M ## "dsCMatrix" ...
M0 <- rbind(0, cbind(0, M))
dM  <- as(M, "denseMatrix")
dM0 <- as(M0,"denseMatrix")
try( lum  <- lu(M) )# Err: "near-singular A"
(lum  <- lu(M,  errSing=FALSE))# NA --- *BUT* it is not stored in @factors
(lum0 <- lu(M0, errSing=FALSE))# NA --- and it is stored in M0@factors[["LU"]]
## "FIXME" - TODO: Consider
replNA <- function(x, value) { x[is.na(x)] <- value ; x }
(EL.1 <- expand(lu.1 <- lu(M.1 <- replNA(M, -10))))
## so it's quite clear how  lu() of the *singular* matrix  M	should work
## but it's not supported by the C code in ../src/cs.c which errors out
stopifnot(all.equal(M.1,  with(EL.1, t(P) %*% L %*% U %*% Q)),
	  is.na(det(M)), is.na(det(dM)),
	  is.na(det(M0)), is.na(det(dM0)) )

###________ Cholesky() ________

##--------  LDL' ---- small exact examples

set.seed(1)
for(n in c(5:12)) {
    cat("\nn = ",n,"\n-------\n")
    rr <- mkLDL(n)
    ##    -------- from 'test-tools.R'
    stopifnot(all(with(rr, A ==
		       as(L %*% D %*% t(L), "symmetricMatrix"))),
	      all(with(rr, A == tcrossprod(L %*% sqrt(D)))))
    d <- rr$d.half
    A <- rr$A
    .A <- as(A, "TsparseMatrix") # 'factors' slot is retained => do chol() _after_ coercion
    R <- chol(A)
    assert.EQ.Mat(R, chol(.A)) # gave infinite recursion
    print(d. <- diag(R))
    D. <- Diagonal(x= d.^2)
    L. <- t(R) %*% Diagonal(x = 1/d.)
    stopifnot(all.equal(as.matrix(D.), as.matrix(rr$ D)),
              all.equal(as.matrix(L.), as.matrix(rr$ L)))
    ##
    CAp <- Cholesky(A)# perm=TRUE --> Permutation:
    validObject(CAp)
    p <- CAp@perm + 1L
    P <- as(p, "pMatrix")
    ## the inverse permutation:
    invP <- solve(P)@perm
    lDet <- sum(2* log(d))# the "true" value
    ldetp  <-         .diag.dsC(Chx = CAp, res.kind = "sumLog")
    ldetp. <- sum(log(.diag.dsC(Chx = CAp, res.kind = "diag") ))
    ##
    CA	<- Cholesky(A,perm=FALSE)
    validObject(CA)
    ldet <- .diag.dsC(Chx = CA, res.kind = "sumLog")
    ## not printing CAp : ends up non-integer for n >= 11
    mCAp <- as(CAp, "CsparseMatrix")
    print(mCA  <- drop0(as(CA, "CsparseMatrix")))
    stopifnot(identical(A[p,p], as(P %*% A %*% t(P),
				   "symmetricMatrix")),
	      relErr(d.^2, .diag.dsC(Chx= CA, res.kind="diag")) < 1e-14,
	      relErr(A[p,p], tcrossprod(mCAp)) < 1e-14)
    if(FALSE)
        rbind(lDet,ldet, ldetp, ldetp.)
    ##  ==> Empirically, I see  lDet = ldet  !=  ldetp == ldetp.
    ## if(rr$rcond.A < ...) warning("condition number of A ..." ## <- TODO
    cat(1,""); assert.EQ.(lDet,  ldet,   tol = 1e-14)
    cat(2,""); assert.EQ.(ldetp, ldetp., tol = 1e-14)
    cat(3,""); assert.EQ.(lDet,  ldetp, tol = n^2* 1e-7)# extreme: have seen 0.0011045 !!
}## for()

mkCholhash <- function(r.all) {
    ## r.all %*% (2^(2:0)), but only those that do not have NA / "?" :
    stopifnot(is.character(rn <- rownames(r.all)),
              is.matrix(r.all), is.logical(r.all))
    c.rn <- vapply(rn, function(ch) strsplit(ch, " ")[[1]], character(3))
    ## Now
    h1 <- function(i) {
        ok <- rep.int(TRUE, 3L)
        if(c.rn[3L, i] == "?")
            ok[2:3] <- FALSE # no supernodal LDL' factorization !!
        r.all[i, ok] %*% 2^((2:0)[ok])
    }
    vapply(seq_len(nrow(r.all)), h1, numeric(1))
}

set.seed(17)
(rr <- mkLDL(4))
(CA <- Cholesky(rr$A))
validObject(CA)
stopifnot(all.equal(determinant(rr$A) -> detA,
                    determinant(as(rr$A, "matrix"))),
          is.all.equal3(c(detA$modulus), log(det(rr$D)), sum(log(rr$D@x))))
A12 <- mkLDL(12, 1/10)
(r12 <- allCholesky(A12$A))[-1]
aCh.hash <- mkCholhash(r12$r.all)
if(requireNamespace("sfsmisc"))
split(rownames(r12$r.all), sfsmisc::Duplicated(aCh.hash))

## TODO: find cases for both choices when we leave it to CHOLMOD to choose
for(n in 1:50) { ## used to seg.fault at n = 10 !
    mkA <- mkLDL(1+rpois(1, 30), 1/10, rcond = FALSE, condest = FALSE)
    cat(sprintf("n = %3d, LDL-dim = %d x %d ", n, nrow(mkA$A), ncol(mkA$A)))
    r <- allCholesky(mkA$A, silentTry=TRUE)
    ## Compare .. apart from the NAs that happen from (perm=FALSE, super=TRUE)
    iNA <- apply(is.na(r$r.all), 1, any)
    cat(sprintf(" -> %3s NAs\n", if(any(iNA)) format(sum(iNA)) else "no"))
    stopifnot(aCh.hash[!iNA] == mkCholhash(r$r.all[!iNA,]))
##     cat("--------\n")
}


## This is a relatively small "critical example" :
A. <-
    new("dsCMatrix", Dim = c(25L, 25L), uplo = "U"
	, i = as.integer(
          c(0, 1, 2, 3, 4, 2, 5, 6, 0, 8, 8, 9, 3, 4, 10, 11, 6, 12, 13, 4,
            10, 14, 15, 1, 2, 5, 16, 17, 0, 7, 8, 18, 9, 19, 10, 11, 16, 20,
            0, 6, 7, 16, 17, 18, 20, 21, 6, 9, 12, 14, 19, 21, 22, 9, 11, 19,
            20, 22, 23, 1, 16, 24))
	##
	, p = c(0:6, 8:10, 12L, 15:16, 18:19, 22:23, 27:28, 32L, 34L, 38L, 46L, 53L, 59L, 62L)
	##
	, x = c(1, 1, 1, 1, 2, 100, 2, 40, 1, 2, 100, 6700, 100, 100, 13200,
	  1, 50, 4100, 1, 5, 400, 20, 1, 40, 100, 5600, 9100, 5000, 5,
	  100, 100, 5900, 100, 6200, 30, 20, 9, 2800, 1, 100, 8, 10, 8000,
	  100, 600, 23900, 30, 100, 2800, 50, 5000, 3100, 15100, 100, 10,
	  5600, 800, 4500, 5500, 7, 600, 18200))
validObject(A.)
## A1: the same pattern as  A.   just simply filled with '1's :
A1 <- A.; A1@x[] <- 1; A1@factors <- list()
A1.8 <- A1; diag(A1.8) <- 8
##
nT. <- as(AT <- as(A., "TsparseMatrix"),"nMatrix")
stopifnot(all(nT.@i <= nT.@j),
	  identical(qr(A1.8), qr(as(A1.8, "generalMatrix"))))

CA <- Cholesky(A. + Diagonal(x = rowSums(abs(A.)) + 1))
validObject(CA)
stopifnotValid(CAinv <- solve(CA), "dsCMatrix")
MA <- as(CA, "CsparseMatrix") # with a confusing warning -- FIXME!
stopifnotValid(MAinv <- solve(MA), "dtCMatrix")
## comparing MAinv with some solve(CA, system="...") .. *not* trivial? - TODO
##
CAinv2 <- solve(CA, Diagonal(nrow(A.)))
CAinv2 <- as(CAinv2, "symmetricMatrix")
stopifnot(identical(CAinv, CAinv2))

## FINALLY fix "TODO": (not implemented *symbolic* factorization of nMatrix)
try(    tc <- Cholesky(nT.)  )

for(p in c(FALSE,TRUE))
    for(L in c(FALSE,TRUE))
        for(s in c(FALSE,TRUE, NA)) {
            cat(sprintf("p,L,S = (%2d,%2d,%2d): ", p,L,s))
            r <- tryCatch(Cholesky(A., perm=p, LDL=L, super=s),
                          error = function(e)e)
            cat(if(inherits(r, "error")) " *** E ***" else
                sprintf("%3d", r@type),"\n", sep="")
        }
str(A., max.level=3) ## look at the 'factors'

facs <- A.@factors
names(facs) <- sub("Cholesky$", "", names(facs))
facs <- facs[order(names(facs))]

sapply(facs, class)
str(lapply(facs, slot, "type"))
## super = TRUE  currently always entails  LDL=FALSE :
## hence isLDL is TRUE for ("D" and not "S"):
sapply(facs, isLDL)

chkCholesky <- function(chmf, A) {
    stopifnot(is(chmf, "CHMfactor"),
              validObject(chmf),
              is(A, "Matrix"), isSymmetric(A))
    if(!is(A, "dsCMatrix"))
        A <- as(as(as(A, "CsparseMatrix"), "symmetricMatrix", "dMatrix"))
    L <- drop0(zapsmall(L. <- as(chmf, "CsparseMatrix")))
    cat("no. nonzeros in L {before / after drop0(zapsmall(.))}: ",
        c(nnzero(L.), nnzero(L)), "\n") ## 112, 95
    ecc <- expand(chmf)
    A... <- with(ecc, crossprod(crossprod(L,P)))
    stopifnot(all.equal(L., ecc$L, tolerance = 1e-14),
              all.equal(A,  A...,  tolerance = 1e-14))
    invisible(ecc)
}

c1.8 <- try(Cholesky(A1.8, super = TRUE))# works "always", interestingly ...
chkCholesky(c1.8, A1.8)



## --- now a "large" (712 x 712) real data example ---------------------------

data(KNex, package = "Matrix")
mtm <- with(KNex, crossprod(mm))
ld.3 <- determinant(Cholesky(mtm, perm = TRUE), sqrt = FALSE)
stopifnot(identical(names(mtm@factors),
                    "sPDCholesky"))
ld.4 <- determinant(Cholesky(mtm, perm = FALSE), sqrt = FALSE)
stopifnot(identical(names(mtm@factors),
                    c("sPDCholesky", "spDCholesky")))
c2 <- Cholesky(mtm, super = TRUE)
validObject(c2)
stopifnot(identical(names(mtm@factors),
                    c("sPDCholesky", "spDCholesky", "SPdCholesky")))

r <- allCholesky(mtm)
r[-1]

## is now taken from cache
c1 <- Cholesky(mtm)

bv <- 1:nrow(mtm) # even integer
b <- matrix(bv)
## solve(c2, b) by default solves  Ax = b, where A = c2'c2 !
x <- solve(c2,b)
stopifnot(identical3(drop(x), solve(c2, bv), drop(solve(c2, b, system = "A"))),
          all.equal(x, solve(mtm, b)))
for(sys in c("A", "LDLt", "LD", "DLt", "L", "Lt", "D", "P", "Pt")) {
    x <- solve(c2, b,  system = sys)
    cat(sys,":\n"); print(head(x))
    stopifnot(dim(x) == c(712, 1),
              identical(drop(x), solve(c2, bv, system = sys)))
}

## log(|LL'|) - check if super = TRUE and simplicial give same determinant
(ld.1 <- determinant(mtm))
if(FALSE) {
## MJ: CHMfactor_ldetL2 is unused outside of these tests, so we no longer
##     have it in the namespace { old definition is in ../src/CHMfactor.c }
ld1 <- .Call("CHMfactor_ldetL2", c1)
ld2 <- .Call("CHMfactor_ldetL2", c2)
stopifnot(all.equal(ld1, ld2),
	  all.equal(ld1, as.vector(ld.1$modulus), tolerance = 1e-14),
          all.equal(ld1, as.vector(ld.3$modulus), tolerance = 1e-14),
          all.equal(ld1, as.vector(ld.4$modulus), tolerance = 1e-14))
} else {
stopifnot(all.equal(as.vector(ld.1$modulus), as.vector(ld.3$modulus),
                    tolerance = 1e-14),
          all.equal(as.vector(ld.1$modulus), as.vector(ld.4$modulus),
                    tolerance = 1e-14))
}

## MJ: ldet[123].dsC() are unused outside of these tests, so we no longer
##     have them in the namespace { old definitions are in ../R/determinant.R }
if(FALSE) {
## Some timing measurements
mtm <- with(KNex, crossprod(mm))
I <- .symDiagonal(n=nrow(mtm))
set.seed(101); r <- runif(100)

system.time(D1 <- sapply(r, function(rho) Matrix:::ldet1.dsC(mtm + (1/rho) * I)))
## 0.842 on fast cmath-5
system.time(D2 <- sapply(r, function(rho) Matrix:::ldet2.dsC(mtm + (1/rho) * I)))
## 0.819
system.time(D3 <- sapply(r, function(rho) Matrix:::ldet3.dsC(mtm + (1/rho) * I)))
## 0.810
stopifnot(is.all.equal3(D1,D2,D3, tol = 1e-13))
}

## Updating LL'  should remain LL' and not become  LDL' :
cholCheck <- function(Ut, tol = 1e-12, super = FALSE, LDL = !super) {
    L <- Cholesky(UtU <- tcrossprod(Ut), super=super, LDL=LDL, Imult = 1)
    L1 <- update(L, UtU, mult = 1)
    L2 <- update(L, Ut,  mult = 1)
    stopifnot(is.all.equal3(L, L1, L2, tol = tol),
              all.equal(update(L, UtU, mult = pi),
                        update(L, Ut,  mult = pi), tolerance = tol)
              )
}

## Inspired by
## data(Dyestuff, package = "lme4")
## Zt <- as(Dyestuff$Batch, "sparseMatrix")
Zt <- new("dgCMatrix", Dim = c(6L, 30L), x = 2*1:30,
          i = rep(0:5, each=5),
          p = 0:30, Dimnames = list(LETTERS[1:6], NULL))
cholCheck(0.78 * Zt, tol=1e-14)

oo <- options(Matrix.quiet.qr.R = TRUE, warn = 2)# no warnings allowed
qrZ <- qr(t(Zt))
Rz <- qr.R(qrZ)
stopifnot(exprs = {
    inherits(qrZ, "sparseQR")
    inherits(Rz, "sparseMatrix")
    isTriangular(Rz)
    isDiagonal(Rz) # even though formally a "dtCMatrix"
    qr2rankMatrix(qrZ, do.warn=FALSE) == 6
})
options(oo)

## problematic rank deficient rankMatrix() case -- only seen in large cases ??
## MJ: NA in diag(<sparseQR>@R) not seen with Apple Clang 14.0.3
Z. <- readRDS(system.file("external", "Z_NA_rnk.rds", package="Matrix"))
(rnkZ. <- rankMatrix(Z., method = "qr")) # gave errors; now warns typically, but not on aarm64 (M1)
qrZ. <- qr(Z.)
options(warn=1)
rnk2 <- qr2rankMatrix(qrZ.) # warning ".. only 684 out of 822 finite diag(R) entries"
oo <- options(warn=2)# no warnings allowed from here
di.NA <- anyNA(diag(qrZ.@R))
stopifnot(is(qrZ, "sparseQR"),
          identical(is.na(rnkZ.), di.NA),
          identical(is.na(rnk2), di.NA))

## The above bug fix was partly wrongly extended to  dense matrices for "qr.R":
x <- cbind(1, rep(0:9, 18))
qr.R(qr(x))              # one negative diagonal
qr.R(qr(x, LAPACK=TRUE)) # two negative diagonals
chkRnk <- function(x, rnk) {
    stopifnot(exprs = {
        rankMatrix(x) == rnk
        rankMatrix(x, method="maybeGrad") == rnk ## but "useGrad" is not !
        rankMatrix(x, method="qrLINPACK") == rnk
        rankMatrix(x, method="qr.R"     ) == rnk
    })# the last gave '0' and a warning in Matrix 1.3-0
}
chkRnk(   x,    2)
chkRnk(diag(1), 1) # had "empty stopifnot" (-> Error in MM's experimental setup) +  warning 'min(<empty>)'
(m3 <- cbind(2, rbind(diag(pi, 2), 8)))
chkRnk(m3, 3)
chkRnk(matrix(0, 4,3), 0)
chkRnk(matrix(1, 5,5), 1) # had failed for "maybeGrad"
chkRnk(matrix(1, 5,2), 1)


showSys.time(
for(i in 1:120) {
    set.seed(i)
    M <- rspMat(n=rpois(1,50), m=rpois(1,20), density = 1/(4*rpois(1, 4)))
    cat(sprintf("%3d: dim(M) = %2dx%2d, rank=%2d, k=%9.4g; ",
		i, nrow(M), ncol(M), rankMatrix(M), kappa(M)))
    for(super in c(FALSE,TRUE)) {
        cat("super=",super,"M: ")
        ## 2018-01-04, Avi Adler: needed 1.2e-12 in Windows 64 (for i=55, l.1):
        cholCheck( M  , tol=2e-12, super=super); cat(" M': ")
        cholCheck(t(M), tol=2e-12, super=super)
    }
    cat(" [Ok]\n")
})

.updateCHMfactor
## TODO: (--> ../TODO "Cholesky"):
## ----
## allow Cholesky(A,..) when A is not symmetric *AND*
## we really want to factorize  AA' ( + beta * I)


## Schur() ----------------------
checkSchur <- function(A, SchurA = Schur(A), tol = 1e-14) {
    stopifnot(is(SchurA, "Schur"),
              isOrthogonal(Q <- SchurA@Q),
              all.equal(as.mat(A),
                        as.mat(Q %*% SchurA@T %*% t(Q)), tolerance = tol))
}

SH <- Schur(H5 <- Hilbert(5))
checkSchur(H5, SH)
checkSchur(Diagonal(x = 9:3))

p <- 4L
uTp <- new("dtpMatrix", x=c(2, 3, -1, 4:6, -2:1), Dim = c(p,p))
(uT <- as(uTp, "unpackedMatrix"))
## Schur ( <general> )  <--> Schur( <triangular> )
Su <- Schur(uT) ;   checkSchur(uT, Su)
gT <- as(uT,"generalMatrix")
Sg  <- Schur(gT) ;  checkSchur(gT, Sg)
Stg <- Schur(t(gT));checkSchur(t(gT), Stg)
Stu <- Schur(t(uT));checkSchur(t(uT), Stu)

stopifnot(exprs = {
    identical3(Sg@T, uT, Su@T)
    identical(Sg@Q, as(diag(p), "generalMatrix"))
    ## LaPck 3.12.0: these must be more careful (Q is *different* permutation):
    is.integer(print(ip <- invPerm(pp <- as(Stg@Q, "pMatrix")@perm)))
    identical(Stg@T, as(t(gT[,ip])[,ip], "triangularMatrix"))
    identical(Stg@Q, as(   diag(p)[,ip], "generalMatrix"))
    ## Stu still has p:1 permutation, but should not rely on it
    is.integer(print(i2 <- invPerm(as(Stu@Q, "pMatrix")@perm)))
    identical(Stu@T, as(t(uT[,i2])[,i2], "triangularMatrix"))
    identical(Stu@Q, as(   diag(p)[,i2], "pMatrix")) # Schur(<triangular>) ==> 'Q' is pMatrix
})


## the pedigreemm example where solve(.) failed:
p <- new("dtCMatrix", i = c(2L, 3L, 2L, 5L, 4L, 4:5), p = c(0L, 2L, 4:7, 7L),
	 Dim = c(6L, 6L), Dimnames = list(as.character(1:6), NULL),
	 x = rep.int(-0.5, 7), uplo = "L", diag = "U")
Sp <- Schur(p)
Sp. <- Schur(as(p,"generalMatrix"))
Sp.p <- Schur(crossprod(p))
## the last two failed
ip <- solve(p)
assert.EQ.mat(solve(ip), as(p,"matrix"))


## chol2inv() for a traditional matrix
assert.EQ.mat(     crossprod(chol2inv(chol(Diagonal(x = 5:1)))),
              C <- crossprod(chol2inv(chol(    diag(x = 5:1)))))
stopifnot(all.equal(C, diag((5:1)^-2)))
## failed in some versions because of a "wrong" implicit generic

U <- cbind(1:0, 2*(1:2))
(sU <- as(U, "CsparseMatrix"))
validObject(sS <- crossprod(sU))
C. <- chol(sS)
stopifnot(all.equal(C., sU, tolerance=1e-15))
## chol(<triangular sparse which is diagonal>)
tC7 <- .trDiagonal(7, 7:1)
stopifnotValid(tC7, "dtCMatrix")
ch7  <- chol(tC7) ## this (and the next 2) failed: 'no slot .. "factors" ..."dtCMatrix"'
chT7 <- chol(tT7 <- as(tC7, "TsparseMatrix"))
chR7 <- chol(tR7 <- as(tC7, "RsparseMatrix"))
stopifnot(expr = {
    isDiagonal(ch7)
    identical(chT7, ch7) # "ddiMatrix" all of them
    identical(chR7, ch7) # "ddiMatrix" all of them
    all.equal(sqrt(7:1), diag(ch7 ))
})



## From [Bug 14834] New: chol2inv *** caught segfault ***
n <- 1e6 # was 595362
A <- chol( D <- Diagonal(n) )
stopifnot(identical(A,D)) # A remains (unit)diagonal
is(tA <- as(A,"triangularMatrix"))# currently a dtTMatrix
stopifnotValid(tA, "dsparseMatrix")
CA <- as(tA, "CsparseMatrix")

selectMethod(solve, c("dtCMatrix","missing"))
##--> .Call(dtCMatrix_sparse_solve, a, .trDiagonal(n))  in ../src/dtCMatrix.c
sA  <- solve(CA)## -- R_CheckStack() segfault in Matrix <= 1.0-4
nca <- diagU2N(CA)
stopifnot(identical(sA, nca))
## same check with non-unit-diagonal D :
A <- chol(D <- Diagonal(n, x = 0.5))
ia <- chol2inv(A)
stopifnot(is(ia, "diagonalMatrix"),
	  all.equal(ia@x, rep(2,n), tolerance = 1e-15))

##------- Factor caches must be cleaned - even after scalar-Ops such as "2 *"
set.seed(7)
d <- 5
S <- 10*Diagonal(d) + rsparsematrix(d,d, 1/4)
class(M <- as(S, "denseMatrix")) # dgeMatrix
m <- as.matrix(M)
(dS <- determinant(S))
stopifnot(exprs = {
    all.equal(determinant(m), dS, tolerance=1e-15)
    all.equal(dS, determinant(M), tolerance=1e-15)
    ## These had failed, as the "LU" factor cache was kept unchanged in 2*M :
    all.equal(determinant(2*S), determinant(2*M) -> d2M)
    all.equal(determinant(S^2), determinant(M^2) -> dM2)
    all.equal(determinant(m^2), dM2)
    all.equal(d*log(2), c(d2M$modulus - dS$modulus))
})

## misc. bugs found in Matrix 1.4-1
L. <- new("dtCMatrix", Dim = c(1L, 1L), uplo = "L",
          p = c(0L, 1L), i = 0L, x = 1)
S. <- forceSymmetric(L.)
lu(S.)
stopifnot(validObject(lu(L.)), # was invalid
          identical(names(S.@factors), "sparseLU")) # was "lu"

## chol() should give matrix with 'Dimnames',
## even if 'Dimnames' are not cached
D. <- as(diag(3), "CsparseMatrix")
D.@Dimnames <- dn <- list(zzz = letters[1:3], ZZZ = LETTERS[1:3])
cd1 <- chol(D.) # "fresh"
stopifnot(identical(cd1@Dimnames, rep(dn[2L], 2L)))
cd2 <- chol(D.) # from cache
stopifnot(identical(cd1, cd2))

## lu(<m-by-0>), lu(<0-by-n>), BunchKaufman(<0-by-0>), chol(<0-by-0>)
stopifnot(identical(lu(new("dgeMatrix", Dim = c(2L, 0L))),
                    new("denseLU", Dim = c(2L, 0L))),
          identical(lu(new("dgeMatrix", Dim = c(0L, 2L))),
                    new("denseLU", Dim = c(0L, 2L))),
          identical(BunchKaufman(new("dsyMatrix", uplo = "U")),
                    new("BunchKaufman", uplo = "U")),
          identical(BunchKaufman(new("dspMatrix", uplo = "L")),
                    new("pBunchKaufman", uplo = "L")),
          identical(Cholesky(new("dpoMatrix", uplo = "U")),
                    new("Cholesky", uplo = "U")),
          identical(Cholesky(new("dppMatrix", uplo = "L")),
                    new("pCholesky", uplo = "L")))

## determinant(<ds[yp]Matrix>) going via Bunch-Kaufman
set.seed(15742)
n <- 10L
syU <- syL <- new("dsyMatrix", Dim = c(n, n), x = rnorm(n * n))
spU <- spL <- new("dspMatrix", Dim = c(n, n), x = rnorm((n * (n + 1L)) %/% 2L))
syL@uplo <- spL@uplo <- "L"
for(m in list(syU, syL, spU, spL))
    for(givelog in c(FALSE, TRUE))
        stopifnot(all.equal(determinant(   m,            givelog),
                            determinant(as(m, "matrix"), givelog)))

## was an error at least in Matrix 1.5-4 ...
BunchKaufman(as.matrix(1))


## 'expand2': product of listed factors should reproduce factorized matrix
## FIXME: many of our %*% methods still mangle dimnames or names(dimnames) ...
##        hence for now we coerce the factors to matrix before multiplying
chkMF <- function(X, Y, FUN, ...) {
    ## t(x)@factors may preserve factorizations with x@uplo
    X@factors <- list()

    mf <- FUN(X, ...)
    e2.mf <- expand2(mf)
    e1.mf <- sapply(names(e2.mf), expand1, x = mf, simplify = FALSE)

    m.e2.mf <- lapply(e2.mf, as, "matrix")
    m.e1.mf <- lapply(e1.mf, as, "matrix")

    identical(m.e1.mf, lapply(m.e2.mf, unname)) &&
        isTRUE(all.equal(Reduce(`%*%`, m.e2.mf), Y))
}
set.seed(24831)
n <- 16L
mS <- tcrossprod(matrix(rnorm(n * n), n, n,
                        dimnames = list(A = paste0("s", seq_len(n)), NULL)))
sS <- as(pS <- as(S <- as(mS, "dpoMatrix"), "packedMatrix"), "CsparseMatrix")
stopifnot(exprs = {
    chkMF(   S , mS,    Schur)
    chkMF(  pS , mS,    Schur)
    chkMF(   S , mS,       lu)
    chkMF(  pS , mS,       lu)
    chkMF(  sS , mS,       lu)
    chkMF(  sS , mS,       qr)
    chkMF(   S , mS, BunchKaufman)
    chkMF(  pS , mS, BunchKaufman)
    chkMF(t( S), mS, BunchKaufman)
    chkMF(t(pS), mS, BunchKaufman)
    chkMF(   S , mS, Cholesky)
    chkMF(  pS , mS, Cholesky)
    chkMF(t( S), mS, Cholesky)
    chkMF(t(pS), mS, Cholesky)
    chkMF(  sS , mS, Cholesky, super = FALSE, LDL =  TRUE)
    chkMF(  sS , mS, Cholesky, super = FALSE, LDL = FALSE)
    chkMF(  sS , mS, Cholesky, super =  TRUE, LDL = FALSE)
})


cat('Time elapsed: ', proc.time(),'\n') # for ``statistical reasons''