File: GTF_superTranscript.cpp

package info (click to toggle)
rna-star 2.7.8a%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 3,076 kB
  • sloc: cpp: 20,429; awk: 483; ansic: 470; makefile: 181; sh: 31
file content (257 lines) | stat: -rwxr-xr-x 11,934 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
/*
* Created by Fahimeh Mirhaj on 5/30/19.
*/  

#include "GTF.h"
#include "streamFuns.h"
#include "genomeParametersWrite.h"

void GTF::superTranscript() {
    if (P.pGe.gTypeString!="Transcriptome" && P.pGe.gTypeString!="SuperTranscriptome") {
        return;
    };
    
    //write full genome
    mkdir((genome.pGe.gDir+"/fullGenome").c_str(), P.runDirPerm);
    genomeParametersWrite(genome.pGe.gDir+"/fullGenome/genomeParameters.txt", P, ERROR_OUT, genome);
    genome.writeChrInfo(genome.pGe.gDir+"/fullGenome/");
    genome.writeGenomeSequence(genome.pGe.gDir+"/fullGenome/");

    uint64 nMinusStrandOffset=genome.nGenome;
    for(uint64 i = 0; i < exonLoci.size(); i++) {//convert (-)strand exons coordinates
        uint64 transId = exonLoci[i][exT];
        if(transcriptStrand[transId] == 2) {
            uint64 temp = exonLoci[i][exS];
            exonLoci[i][exS] = 2*nMinusStrandOffset - 1 - exonLoci[i][exE];
            exonLoci[i][exE] = 2*nMinusStrandOffset - 1 - temp;
        };
    };
    
    vector<array<uint64,2>> mergedIntervals;
    {//create mergedIntervals=union of all exons, and condensed genome
        //exonLoci are transformed into coordinates in condensed genome
        //sort by exon start position
        sort(exonLoci.begin(), exonLoci.end(),
             [](const array<uint64, exL>& e1, const array<uint64, exL>& e2) {
                 return e1[exS] < e2[exS];
             });

        //mergedIntervals
        uint64 gapValue = exonLoci[0][exS];
        array<uint64,2> curr = {exonLoci[0][exS], exonLoci[0][exE]}; //intervals[0]
        exonLoci[0][exS] = 0;
        exonLoci[0][exE] -= gapValue;

        for(uint64 i = 1; i < exonLoci.size(); ++i) {
            if(exonLoci[i][exS] <= curr[1]+1) {
                curr[1] = max(curr[1], exonLoci[i][exE]);
            } else {
                gapValue += exonLoci[i][exS] - curr[1] - 1;
                mergedIntervals.push_back(curr);
                curr = {exonLoci[i][exS], exonLoci[i][exE]};
            };
            exonLoci[i][exS] -= gapValue;
            exonLoci[i][exE] -= gapValue;
        };
        mergedIntervals.push_back(curr);
    
        //Condensed genome (a.k.a SuperTranscriptome) sequence
        for(const auto& p: mergedIntervals) {
            for(uint64 j = p[0]; j <= p[1]; ++j) {
                superTrome.seqConcat.push_back((uint8) genome.G[j]);
            };
        };
        P.inOut->logMain << "SuperTranscriptome (condensed) genome length = " << superTrome.seqConcat.size() <<endl;
    };

    
    //transcriptStartEnd=normal transcripts in condensed genome
    transcriptStartEnd.resize(transcriptID.size(), {(uint64)-1, 0}); 
    for(uint64 i = 0 ; i < exonLoci.size(); i++) {//start-end of the normal transcripts in the condensed genome coordinates
        uint64 transId = exonLoci[i][exT];
        transcriptStartEnd[transId][0] = min(transcriptStartEnd[transId][0], exonLoci[i][exS]);
        transcriptStartEnd[transId][1] = max(transcriptStartEnd[transId][1], exonLoci[i][exE]);
    };
    
    vector<array<uint64,2>> superTrStartEnd;
    vector<uint64> mergedIntervalsSuperTrIndex(mergedIntervals.size());
    uint64 miI=0, miLen=0;
    {//superTrStartEnd=coordinates in Condendsed genome
        vector<array<uint64,2>> transcriptStartEndSorted = transcriptStartEnd;//sorted transript intervals
        sort(transcriptStartEndSorted.begin(), transcriptStartEndSorted.end(),
             [](const array<uint64,2>& t1, const array<uint64,2>& t2) {
                 return t1[0] < t2[0];
             });
        auto curr = transcriptStartEndSorted.front();
        for(const auto& p: transcriptStartEndSorted) {//if transcript intervals overlap by >=1 base, merge them into SuperTranscripts
            
            while (miLen<curr[1]) {//keep up with merged intervals
                miLen += mergedIntervals[miI][1]-mergedIntervals[miI][0]+1;
                mergedIntervalsSuperTrIndex[miI]=superTrStartEnd.size();
                miI++;
            };            
            curr[1]=max(curr[1],miLen-1);//suTr boundary has to be at the mergedInterval boundary
            
            if(p[0] <= curr[1]) { //without +1
                curr[1] = max(curr[1], p[1]);
            } else {
                superTrStartEnd.push_back(curr);
                curr = p;
            };
        };
        superTrStartEnd.push_back(curr);//record last element
    };
    
    //superTranscript sequences
    uint64 maxSTlen=0;
    for(const auto& p: superTrStartEnd) {
        superTrome.seq.push_back(vector<uint8>(superTrome.seqConcat.begin()+p[0], superTrome.seqConcat.begin()+p[1]+1));
        maxSTlen=max(maxSTlen,p[1]-p[0]);
    };
    P.inOut->logMain << "Number of superTranscripts = " << superTrStartEnd.size() <<";   max length = " <<maxSTlen <<endl;
    
    superTrome.trIndex.resize(transcriptID.size());
    //for each normal transcript, find superTranscript it belongs to
    uint64 ist=0;
    for (auto &ee: exonLoci) {
        if (ee[exS]>superTrStartEnd[ist][1])
            ++ist;
        superTrome.trIndex[ee[exT]]=ist;
    };
    
    superTrome.trStartEnd.resize(transcriptID.size());
    for(uint i = 0; i < transcriptStartEnd.size(); i++) {
        superTrome.trStartEnd[i][0] = transcriptStartEnd[i][0] - superTrStartEnd[superTrome.trIndex[i]][0];
        superTrome.trStartEnd[i][1] = transcriptStartEnd[i][1] - superTrStartEnd[superTrome.trIndex[i]][0];
    };
    //////////////////Normal transcripts
    sort(exonLoci.begin(), exonLoci.end(),
         [](const array<uint64, exL>& e1, const array<uint64, exL>& e2) {
             return (e1[exT] < e2[exT]) || ((e1[exT] == e2[exT]) && (e1[exS] < e2[exS]));
         });
    
    transcriptSeq.resize(transcriptID.size());         
    for(uint64 i = 0; i < exonLoci.size(); i++) {
        transcriptSeq[exonLoci[i][exT]].insert(
                                               transcriptSeq[exonLoci[i][exT]].end(), 
                                               superTrome.seqConcat.begin()+exonLoci[i][exS], 
                                               superTrome.seqConcat.begin()+exonLoci[i][exE] + 1
                                              );
    };

    //output normal transcript sequences
    vector<char> numToCharConverter{'A','C','G','T','N'};
    ofstream & trSeqOut = ofstrOpen(P.pGe.gDir+"/transcriptSequences.fasta",ERROR_OUT, P);
    for (uint64 ii = 0; ii < transcriptSeq.size(); ii++) {
        trSeqOut << ">" << transcriptID[ii] << "\n";
        for(uint64 jj = 0; jj < transcriptSeq[ii].size(); jj++) {
            trSeqOut << numToCharConverter[transcriptSeq[ii][jj]];
        };
        trSeqOut << "\n";
    };
    trSeqOut.close();
    ofstream & sutrSeqOut = ofstrOpen(P.pGe.gDir+"/superTranscriptSequences.fasta",ERROR_OUT, P);
    for (uint64 ii = 0; ii < superTrome.seq.size(); ii++) {
        sutrSeqOut << ">st" << to_string(ii) << "\n";
        for(uint64 jj = 0; jj < superTrome.seq[ii].size(); jj++) {
            sutrSeqOut << numToCharConverter[superTrome.seq[ii][jj]];
        };
        sutrSeqOut << "\n";
    };
    sutrSeqOut.close();
    
    
    // splice junctions, in superTranscript coordinates. Here, sjS is the last base of donor exon, and sjE is the last base of acceptor exon
    for(uint64 i = 1; i < exonLoci.size(); i++) {//exonLoci are still sorted by transcript index and start coordinate
        if (exonLoci[i][exT]==exonLoci[i-1][exT]) {//same transcript
            if (exonLoci[i][exS] > (exonLoci[i-1][exE]+1)) {//gap >0, otherwise we do not need to record the junction (may need it in the future for other purposes though)
                uint64 sti=superTrome.trIndex[exonLoci[i][exT]];//ST index
                uint64 sts=superTrStartEnd[sti][0]; //superTranscript start
                superTrome.sj.emplace_back();//add one element
                superTrome.sj.back().start = (uint32)(exonLoci[i-1][exE]-sts);//start at the last base of the exon
                superTrome.sj.back().end = (uint32)(exonLoci[i]  [exS]-sts);//end at the first base of the next exon
                superTrome.sj.back().tr = exonLoci[i][exT];//the transcript info is retained, thus there will be duplicate junctions that belong to different transcripts
                superTrome.sj.back().super = sti;
            };
        };
    };
    superTrome.sjCollapse();
    
    //save some variables for real genome here?
    
    //replace the Genome sequence and all necessary parameters for downstream genome generation
    if (P.pGe.gTypeString=="Transcriptome") {
        genome.concatenateChromosomes(transcriptSeq, transcriptID, genome.genomeChrBinNbases);
        gtfYes=false; //annotations were converted into transcript sequences and are no longer used
        P.sjdbInsert.yes=false; //actually, it might pe possible to add splice junctions on top of the transcriptome
    } else if (P.pGe.gTypeString=="SuperTranscriptome") {
        vector<string> superTranscriptID(superTrStartEnd.size());
        for (uint64 ii=0; ii<superTranscriptID.size(); ii++)
            superTranscriptID[ii]="st" + to_string(ii);
        
        genome.concatenateChromosomes(superTrome.seq, superTranscriptID, genome.genomeChrBinNbases);
        
        transcriptStrand.resize(superTrStartEnd.size(),1);//transcript are always on + strand in superTr
        
        //sort but exon start position
        sort(exonLoci.begin(), exonLoci.end(),
            [](const array<uint64, exL>& e1, const array<uint64, exL>& e2)
            {
                return e1[exS] < e2[exS];
            }
        );
        //shift exonLoci according to chrStart
        uint64 ist=0;
        for (auto &ee: exonLoci) {
            if (ee[exS]>superTrStartEnd[ist][1])
                ++ist;
            ee[exS]+=genome.chrStart[ist]-superTrStartEnd[ist][0];
            ee[exE]+=genome.chrStart[ist]-superTrStartEnd[ist][0];
        };
    };
    
    //output conversion blocks
    ofstream & convStream = ofstrOpen(P.pGe.gDir+"/fullGenome/conversionToFullGenome.tsv",ERROR_OUT, P);
    convStream << mergedIntervals.size() <<'\t'<< nMinusStrandOffset <<'\n';
    
    uint64 condGstart=0; //start of the interval in the condensed genome
    for (uint64 ib=0; ib<mergedIntervals.size(); ib++) {
        auto b=mergedIntervals[ib];
        uint64 len1 = b[1]-b[0]+1;
        uint64 iSuTr=mergedIntervalsSuperTrIndex[ib];

        //            start in the suTrome:  start in condG                                length     start in fullGenome
        convStream << genome.chrStart[iSuTr]+condGstart-superTrStartEnd[iSuTr][0] <<'\t'<< len1<<'\t'<< b[0] <<'\n'; //<<"\t"<<iSuTr<<"\t"<<b[1]<<"\t"<<condGstart<<"\t"<<superTrStartEnd[iSuTr][0]<<"\t"<<superTrStartEnd[iSuTr][1]<<'\n';
        condGstart+=len1;
//         if (condGstart>superTrStartEnd[iSuTr][1])
//             ++iSuTr;
    };
    convStream.close();
}

void Genome::concatenateChromosomes(const vector<vector<uint8>> &vecSeq, const vector<string> &vecName, const uint64 padBin)
{//concatenate chromosome sequence into linear genome, with padding
 //changes genome: chrStart, chrLen, chrName, G  
    nChrReal=vecSeq.size();
    chrLength.resize(nChrReal,0);
    chrStart.resize(nChrReal+1,0);
    chrName=vecName;
    chrNameIndex.clear();
    for (uint32 ii=0; ii<nChrReal; ii++) {
        chrLength[ii]=vecSeq[ii].size();
        chrStart[ii+1]=chrStart[ii]+((chrLength[ii]+1)/padBin+1)*padBin;//+1 makes sure that there is at least one spacer base between chromosomes
        chrNameIndex[chrName[ii]]=ii;
    };

    nGenome=chrStart.back();
    //re-allocate G and copy the sequences
    delete[] G1;
    genomeSequenceAllocate(nGenome, nG1alloc, G, G1);
    for (uint32 ii=0; ii<nChrReal; ii++) {
        memcpy(G+chrStart[ii],vecSeq[ii].data(),vecSeq[ii].size());
    };
    
    for (uint ii=0;ii<nGenome;ii++) {//- strand
        G[2*nGenome-1-ii]=G[ii]<4 ? 3-G[ii] : G[ii];
    };    
};