1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
|
#include "Genome.h"
#include "SequenceFuns.h"
#include "streamFuns.h"
#include "ErrorWarning.h"
#include "serviceFuns.cpp"
#include "GTF.h"
template <typename T>
void appendVector(vector<T> &v1, const vector<T> &v2)
{
v1.reserve(v1.size()+v2.size());
v1.insert(v1.end(), v2.begin(), v2.end());
};
template <typename T>
vector<T> concatenateVectors(const vector<T> &v1, const vector<T> &v2)
{
vector<T> vOut;
vOut.reserve(v1.size()+v2.size());
vOut=v1;
vOut.insert(vOut.end(), v2.begin(), v2.end());
return vOut;
};
vector<string> appendString (vector<string> vString, string strAdd)
{
for (auto & s : vString)
s += strAdd;
return vString;
};
void Genome::transformGenome(GTF *gtf)
{
if (pGe.transform.type==0)
return;
P.inOut->logMain << "transformGenome: processing VCF" << endl;
map<string,vector<VariantInfo>> vcfVariants[pGe.transform.type];
{//load VCF file: per chromosome, 1 or 2 haplotypes
ifstream &vcfStream = ifstrOpen(pGe.transform.vcfFile, ERROR_OUT, "SOLUTION: check the path and permissions of the VCF file: "+pGe.transform.vcfFile, P);
string vcfLine;
while (std::getline (vcfStream, vcfLine)) {
string chr,id, ref, alt, dummy, sample;
uint64 pos;
istringstream vcfLineStream(vcfLine);
vcfLineStream >> chr;
if (chr.at(0)=='#')
continue;
if (chrNameIndex.count(chr)==0) {//chr not in Genome
P.inOut->logMain << "WARNING: while processing varVCFfile file=" << P.var.vcfFile <<": chromosome '"<<chr<<"' not found in Genome fasta file\n";
continue;
};
if (ref=="*" || alt=="*") {
P.inOut->logMain << "WARNING: VCF: * allele"<<vcfLine<<endl;
continue;
};
vcfLineStream >> pos >> id >> ref >> alt >> dummy >> dummy >> dummy >> dummy >> sample;
//we assume ref can only be one sequence
vector <string> altV;
splitString(alt,',',altV);
if (pGe.transform.type==1) {//use first alt allele TODO make warning if there are 2 alts?
alt=altV[0];
VariantInfo var1={pos, (int32)alt.size()-(int32)ref.size(), {ref,alt}};
vcfVariants[0][chr].push_back(var1);
} else if (pGe.transform.type==2) {//diploid genome
for (uint32 ih=0; ih<2; ih++) {
//TODO check that sample has proper format (i.e. 0|1 or 0/1 etc)
int32 gt=atoi(&sample.at(ih*2)); //process genotype info in the form of 0|1, i.e. 0th char and 2nd char
if (gt==0) //ref haplotype - do not record
continue;
alt=altV[gt-1];//select alt
VariantInfo var1={pos, (int32)alt.size()-(int32)ref.size(), {ref,alt}};
vcfVariants[ih][chr].push_back(var1);
};
};
};
vcfStream.close();
};
uint64 nGenome1=0, nG1allocNew;
char *Gnew=NULL, *G1new=NULL;
if (pGe.transform.type==1) {//haploid: insert alternative alleles into genome sequence, create conversion-block file
vector<uint64> chrStart1, chrLength1;
transformChrLenStart(vcfVariants[0], chrStart1, chrLength1);
nGenome1=chrStart1.back();
P.inOut->logMain << "Old/new genome sizes: " << nGenome <<" "<< nGenome1 <<endl;
genomeSequenceAllocate(nGenome1, nG1allocNew, Gnew, G1new);
vector<array<uint64,3>> transformBlocks;
transformGandBlocks(vcfVariants[0], chrStart1, chrLength1, transformBlocks, Gnew);
transformExonLoci(gtf->exonLoci, transformBlocks);
chrStart=chrStart1;
chrLength=chrLength1;
transformBlocksWrite(transformBlocks);
} else if (pGe.transform.type==2) {//diploid: duplicate chromosomes, insert genotypes into sequence
vector<uint64> chrStart1[2], chrLength1[2];
for (uint32 ih=0; ih<2; ih++)
transformChrLenStart(vcfVariants[ih], chrStart1[ih], chrLength1[ih]);
for (auto &cs : chrStart1[1])
cs += chrStart1[0].back();
nGenome1=chrStart1[1].back();
P.inOut->logMain << "Old/new genome sizes: " << nGenome <<" "<< nGenome1 <<endl;
genomeSequenceAllocate(nGenome1, nG1allocNew, Gnew, G1new);
//genome sequence and transform blocks
vector<array<uint64,3>> transformBlocks[2];
transformGandBlocks(vcfVariants[0], chrStart1[0], chrLength1[0], transformBlocks[0], Gnew);//fill first haplotype sequence
transformGandBlocks(vcfVariants[1], chrStart1[1], chrLength1[1], transformBlocks[1], Gnew);//fill second haplotype sequence
//annotations
vector<array<uint64,exL>> exonLoci1[2];
exonLoci1[0]=gtf->exonLoci;
exonLoci1[1]=gtf->exonLoci;
for (auto & exon : exonLoci1[1]) {//shift gene/tanscript IDs for 2nd haplotype
exon[exT] += gtf->transcriptID.size();
exon[exG] += gtf->geneID.size();
};
appendVector(gtf->geneAttr, gtf->geneAttr);
appendVector(gtf->transcriptStrand, gtf->transcriptStrand);
gtf->geneID = concatenateVectors(appendString(gtf->geneID, "_h1"), appendString(gtf->geneID, "_h2"));
gtf->transcriptID = concatenateVectors(appendString(gtf->transcriptID, "_h1"), appendString(gtf->transcriptID, "_h2"));
transformExonLoci(exonLoci1[0], transformBlocks[0]);
transformExonLoci(exonLoci1[1], transformBlocks[1]);
//concatenate all vectors
chrName = concatenateVectors( appendString(chrName, "_h1"), appendString(chrName, "_h2") );
nChrReal=chrName.size();
for (uint ii=0;ii<nChrReal;ii++) {
chrNameIndex[chrName[ii]]=ii;
};
chrStart1[0].pop_back(); //remove last element which shows the beginning of the next chr
chrStart = concatenateVectors( chrStart1[0], chrStart1[1] );
chrLength=concatenateVectors( chrLength1[0], chrLength1[1] );
gtf->exonLoci=concatenateVectors( exonLoci1[0], exonLoci1[1] );
appendVector( transformBlocks[0], transformBlocks[1] );
transformBlocksWrite(transformBlocks[0]);
};
//assign transformed genome
delete[] G1;
G1=G1new;
G=Gnew;
nG1alloc=nG1allocNew;
nGenome=nGenome1;
};
void Genome::transformChrLenStart(map<string,vector<VariantInfo>> &vcfVariants, vector<uint64> &chrStart1, vector<uint64> &chrLength1)
{//recalculate chrLength/Start
chrStart1=chrStart;
chrLength1=chrLength;
//vector<bool> chrTransformYes(chrLength.size(), false);
for (uint32 ichr=0; ichr<chrLength.size(); ichr++) {
if (vcfVariants.count(chrName[ichr])==0)
continue;
//chrTransformYes[ichr]=true;
vector<VariantInfo> &vV = vcfVariants[chrName[ichr]];
std::sort(vV.begin(), vV.end(),
[](const VariantInfo &vi1, const VariantInfo &vi2) {
return vi1.pos < vi2.pos;
});
//filter: remove variants overlapping deletions
vector<VariantInfo> vV1;
vV1.reserve(vV.size());
uint64 g0=0; //first base after variant
for (const auto &v : vV) {
if (v.pos>=g0)
vV1.push_back(v);
g0=max(g0,v.pos+v.seq[0].size());
};
P.inOut->logMain << chrName[ichr] <<": filtered out overlapping variants = "<< (int64)vV.size()-(int64)vV1.size() <<"; remaining variants = "<< vV1.size() <<'\n';
vV=vV1;
for (const auto &v : vV) {
chrLength1[ichr] += (int64)v.seq[1].size()-(int64)v.seq[0].size();
};
P.inOut->logMain << "Transformed chr length difference: " <<chrName[ichr] <<" "<< (int64)chrLength1[ichr]-(int64)chrLength[ichr] <<'\n';
};
//recalculate chrStart
chrStart1[0] = 0;
for (uint32 ichr=0; ichr<chrLength.size(); ichr++) {
chrStart1[ichr+1]=chrStart1[ichr]+((chrLength1[ichr]+1)/genomeChrBinNbases+1)*genomeChrBinNbases;//+1 makes sure that there is at least one spacer base between chromosomes
P.inOut->logMain << "Transformed chr start difference: " << chrName[ichr] <<" "<< chrStart1[ichr]-chrStart[ichr] <<'\n';
};
};
void Genome::transformGandBlocks(map<string,vector<VariantInfo>> &vcfVariants, vector<uint64> &chrStart1, vector<uint64> &chrLength1, vector<array<uint64,3>> &transformBlocks, char *Gnew)
{
for (uint32 ichr=0; ichr<chrLength.size(); ichr++) {
if (vcfVariants.count(chrName[ichr])==0) {//simple copy
memcpy(Gnew+chrStart1[ichr], G+chrStart[ichr], chrLength[ichr]);
transformBlocks.push_back({chrStart[ichr], chrLength[ichr], chrStart1[ichr]});
continue;
};
vector<VariantInfo> &vV = vcfVariants[chrName[ichr]];
uint64 iv=0, g1=chrStart1[ichr], g0=chrStart[ichr];
transformBlocks.push_back({g0, 0, g1});//first block for the chromosome
while (g0<chrStart[ichr]+chrLength[ichr]) {
if (g0==vV[iv].pos-1+chrStart[ichr]) {//VCF records 1-based positions
array<string,2> &seq = vV[iv].seq;
//debug
char s0[seq[0].size()];
convertNucleotidesToNumbers(seq[0].c_str(), s0, seq[0].size());
if (memcmp(G+g0, s0, seq[0].size()))
cerr <<g0<<" "<<seq[0]<<" "<<G+g0<<endl;
//debug
char s1[seq[1].size()];
convertNucleotidesToNumbers(seq[1].c_str(), s1, seq[1].size());
memcpy(Gnew+g1, s1, seq[1].size());
g0 += seq[0].size();
g1 += seq[1].size();
if (vV[iv].len!=0) {//new block
//length of the previous block:
transformBlocks.back()[1] = g0-seq[0].size() + min(seq[0].size(), seq[1].size()) - transformBlocks.back()[0];
transformBlocks.push_back({g0, 0, g1});
};
if (iv<vV.size()-1) //do not overshoot vV
++iv;
} else {
Gnew[g1]=G[g0];
++g0;
++g1;
};
};
if (transformBlocks.back()[1] == 0)
transformBlocks.back()[1] = g0 - transformBlocks.back()[0];
if (g1!=chrStart1[ichr]+chrLength1[ichr])
cerr << g1 <<" "<< chrStart1[ichr]+chrLength1[ichr] <<endl;
};
};
void Genome::transformBlocksWrite(vector<array<uint64,3>> &transformBlocks)
{//write out transformBlocks
ofstream & convStream = ofstrOpen(P.pGe.gDir+"/transformGenomeBlocks.tsv",ERROR_OUT, P);
convStream << transformBlocks.size() <<'\t'<< "-1" <<'\n'; //no -strand
for (auto &tb : transformBlocks) {
convStream << tb[2] <<'\t'<< tb[1] <<'\t'<< tb[0] <<'\n'; //revert old new for reverse conversion
};
convStream.close();
};
void Genome::transformExonLoci(vector<array<uint64,exL>> &exonLoci, vector<array<uint64,3>> &transformBlocks)
{//transform exonLoci with transformBlocks
//simple point transformation for start and end
//start in the gap moves to the right, end in the gap moves to the left
auto exonLoci1(exonLoci);
exonLoci1.clear();
for (auto & exon : exonLoci) {
auto exonS = exon[exS];
auto exonE = exon[exE];
auto tBit = std::upper_bound(transformBlocks.begin(), transformBlocks.end(), array<uint64,3> {exonS,0,0},
[](const array<uint64,3> &t1, const array<uint64,3> &t2)
{
return t1[0] < t2[0];
});
--tBit; //tBit is last block start on the left of exonS
auto tB=*tBit;
if (exonS < tB[0]+tB[1]) {//exonS inside block
exon[exS]=tB[2]+exonS-tB[0];
} else {
exon[exS]=tBit[1][2];//exon start shifts to the next block
};
while ( exonE > (*tBit)[0]+(*tBit)[1] ) //until exonE is not past the end of the block
++tBit;
tB=*tBit;
if (exonE >= tB[0]) {//exonE inside block
exon[exE]=tB[2]+exonE-tB[0];
} else {
exon[exE]=tBit[-1][2]+tBit[-1][1]-1;//exon end shifts to the end of the previous block
};
if (exon[exS]<=exon[exE])
exonLoci1.push_back(exon);
};
P.inOut->logMain << "Transform exons: removed " << exonLoci.size()- exonLoci1.size() <<endl;
exonLoci=exonLoci1;
};
|