1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
|
#include "SoloFeature.h"
#include "streamFuns.h"
#include "TimeFunctions.h"
#include "serviceFuns.cpp"
#include <unordered_map>
#include "SoloCommon.h"
#include <bitset>
#define def_MarkNoColor (uint32) -1
inline int funCompareSolo1 (const void *a, const void *b) {
uint32 *va= (uint32*) a;
uint32 *vb= (uint32*) b;
if (va[1]>vb[1]) {
return 1;
} else if (va[1]<vb[1]) {
return -1;
} else if (va[0]>vb[0]){
return 1;
} else if (va[0]<vb[0]){
return -1;
} else {
return 0;
};
};
void SoloFeature::collapseUMIall(uint32 iCB, uint32 *umiArray)
{
uint32 *rGU=rCBp[iCB];
uint32 rN=nReadPerCB[iCB];
qsort(rGU,rN,rguStride*sizeof(uint32),funCompareNumbers<uint32>); //sort by gene index
//compact reads per gene
uint32 gid1=-1;//current gID
uint32 nGenes=0; //number of genes
uint32 *gID = new uint32[min(featuresNumber,rN)+1]; //gene IDs
uint32 *gReadS = new uint32[min(featuresNumber,rN)+1]; //start of gene reads TODO: allocate this array in the 2nd half of rGU
for (uint32 iR=0; iR<rN*rguStride; iR+=rguStride) {
if (rGU[iR+rguG]!=gid1) {//record gene boundary
gReadS[nGenes]=iR;
gid1=rGU[iR+rguG];
gID[nGenes]=gid1;
++nGenes;
};
};
gReadS[nGenes]=rguStride*rN;//so that gReadS[nGenes]-gReadS[nGenes-1] is the number of reads for nGenes, see below in qsort
//unordered_map<uint32, uint32> umiMaxGeneCount;//for each umi, max counts of reads per gene
unordered_map <uintUMI, unordered_map<uint32,uint32>> umiGeneHash, umiGeneHash0;
//UMI //Gene //Count
if (pSolo.umiFiltering.MultiGeneUMI) {
for (uint32 iR=0; iR<rN*rguStride; iR+=rguStride) {
umiGeneHash[rGU[iR+1]][rGU[iR]]++;
};
for (auto &iu : umiGeneHash) {//loop over all UMIs
if (iu.second.size()==1)
continue;
uint32 maxu=0;
for (auto &ig : iu.second) {//loop over genes for a given UMI
if (maxu<ig.second)
maxu=ig.second; //find gene with maximum count
};
if (maxu==1)
maxu=2;//to kill UMIs with 1 read to one gene, 1 read to another gene
for (auto &ig : iu.second) {
if (maxu>ig.second)
ig.second=0; //kills Gene with read count *strictly* < maximum count
};
};
};
vector<unordered_map <uintUMI,uintUMI>> umiCorrected(nGenes);
if (countCellGeneUMI.size() < countCellGeneUMIindex[iCB] + nGenes*countMatStride)
countCellGeneUMI.resize((countCellGeneUMI.size() + nGenes*countMatStride )*2);//allocated vector too small
nGenePerCB[iCB]=0;
nUMIperCB[iCB]=0;
countCellGeneUMIindex[iCB+1]=countCellGeneUMIindex[iCB];
/////////////////////////////////////////////
/////////// main cycle over genes
for (uint32 iG=0; iG<nGenes; iG++) {//collapse UMIs for each gene
uint32 *rGU1=rGU+gReadS[iG];
uint32 nR0 = (gReadS[iG+1]-gReadS[iG])/rguStride; //total number of reads
if (nR0==0)
continue; //no reads - this should not happen?
qsort(rGU1, nR0, rguStride*sizeof(uint32), funCompareTypeShift<uint32,rguU>);
//exact collapse
uint32 iR1=-umiArrayStride; //number of distinct UMIs for this gene
uint32 u1=-1;
for (uint32 iR=rguU; iR<gReadS[iG+1]-gReadS[iG]; iR+=rguStride) {//count and collapse identical UMIs
if (pSolo.umiFiltering.MultiGeneUMI && umiGeneHash[rGU1[iR]][gID[iG]]==0) {//multigene UMI is not recorded
if ( pSolo.umiDedup.typeMain != UMIdedup::typeI::NoDedup ) //for NoDedup, the UMI filtering is not done
rGU1[iR] = (uintUMI) -1; //mark multigene UMI, so that UB tag will be set to -
continue;
};
if (rGU1[iR]!=u1) {
iR1 += umiArrayStride;
u1=rGU1[iR];
umiArray[iR1]=u1;
umiArray[iR1+1]=0;
};
umiArray[iR1+1]++;
//if ( umiArray[iR1+1]>nRumiMax) nRumiMax=umiArray[iR1+1];
};
uint32 nU0 = (iR1+umiArrayStride)/umiArrayStride;//number of UMIs after simple exact collapse
if (pSolo.umiFiltering.MultiGeneUMI_CR) {
if (nU0==0)
continue; //nothing to count
for (uint64 iu=0; iu<nU0*umiArrayStride; iu+=umiArrayStride) {
umiGeneHash0[umiArray[iu+0]][iG]+=umiArray[iu+1];//this sums read counts over UMIs that were collapsed
};
umiArrayCorrect_CR(nU0, umiArray, readInfo.size()>0, false, umiCorrected[iG]);
for (uint64 iu=0; iu<nU0*umiArrayStride; iu+=umiArrayStride) {//just fill the umiGeneHash - will calculate UMI counts later
umiGeneHash[umiArray[iu+2]][iG]+=umiArray[iu+1];//this sums read counts over UMIs that were collapsed
};
continue; //done with MultiGeneUMI_CR, readInfo will be filled later
};
if (pSolo.umiDedup.yes.NoDedup)
countCellGeneUMI[countCellGeneUMIindex[iCB+1] + pSolo.umiDedup.countInd.NoDedup] = nR0;
if (nU0>0) {//otherwise no need to count
if (pSolo.umiDedup.yes.Exact)
countCellGeneUMI[countCellGeneUMIindex[iCB+1] + pSolo.umiDedup.countInd.Exact] = nU0;
if (pSolo.umiDedup.yes.CR)
countCellGeneUMI[countCellGeneUMIindex[iCB+1] + pSolo.umiDedup.countInd.CR] =
umiArrayCorrect_CR(nU0, umiArray, readInfo.size()>0 && pSolo.umiDedup.typeMain==UMIdedup::typeI::CR, true, umiCorrected[iG]);
if (pSolo.umiDedup.yes.Directional)
countCellGeneUMI[countCellGeneUMIindex[iCB+1] + pSolo.umiDedup.countInd.Directional] =
umiArrayCorrect_Directional(nU0, umiArray, readInfo.size()>0 && pSolo.umiDedup.typeMain==UMIdedup::typeI::Directional, true, umiCorrected[iG], 0);
if (pSolo.umiDedup.yes.Directional_UMItools)
countCellGeneUMI[countCellGeneUMIindex[iCB+1] + pSolo.umiDedup.countInd.Directional_UMItools] =
umiArrayCorrect_Directional(nU0, umiArray, readInfo.size()>0 && pSolo.umiDedup.typeMain==UMIdedup::typeI::Directional_UMItools, true, umiCorrected[iG], -1);
//this changes umiArray, so it should be last call
if (pSolo.umiDedup.yes.All)
countCellGeneUMI[countCellGeneUMIindex[iCB+1] + pSolo.umiDedup.countInd.All] =
umiArrayCorrect_Graph(nU0, umiArray, readInfo.size()>0 && pSolo.umiDedup.typeMain==UMIdedup::typeI::All, true, umiCorrected[iG]);
};//if (nU0>0)
{//check any count>0 and finalize record for this gene
uint32 totcount=0;
for (uint32 ii=countCellGeneUMIindex[iCB+1]+1; ii<countCellGeneUMIindex[iCB+1]+countMatStride; ii++) {
totcount += countCellGeneUMI[ii];
};
if (totcount>0) {//at least one umiDedup type is non-0
countCellGeneUMI[countCellGeneUMIindex[iCB+1] + 0] = gID[iG];
nGenePerCB[iCB]++;
nUMIperCB[iCB] += countCellGeneUMI[countCellGeneUMIindex[iCB+1] + pSolo.umiDedup.countInd.main];
countCellGeneUMIindex[iCB+1] = countCellGeneUMIindex[iCB+1] + countMatStride;//iCB+1 accumulates the index
};
};
if (readInfo.size()>0) {//record cb/umi for each read
for (uint32 iR=0; iR<gReadS[iG+1]-gReadS[iG]; iR+=rguStride) {//cycle over reads
uint64 iread1 = rGU1[iR+rguR];
readInfo[iread1].cb = indCB[iCB] ;
uint32 umi=rGU1[iR+rguU];
if (umiCorrected[iG].count(umi)>0)
umi=umiCorrected[iG][umi]; //correct UMI
readInfo[iread1].umi=umi;
};
};
};
if (pSolo.umiFiltering.MultiGeneUMI_CR) {
vector<uint32> geneCounts(nGenes,0);
vector<unordered_set<uintUMI>> geneUmiHash;
if (readInfo.size()>0)
geneUmiHash.resize(nGenes);
for (auto &iu: umiGeneHash) {//loop over UMIs for all genes
uint32 maxu=0, maxg=-1;
for (auto &ig : iu.second) {
if (ig.second>maxu) {
maxu=ig.second;
maxg=ig.first;
} else if (ig.second==maxu) {
maxg=-1;
};
};
if ( maxg+1==0 )
continue; //this umi is not counted for any gene, because two genes have the same read count for this UMI
for (auto &ig : umiGeneHash0[iu.first]) {//check that this umi/gene had also top count for uncorrected umis
if (ig.second>umiGeneHash0[iu.first][maxg]) {
maxg=-1;
break;
};
};
if ( maxg+1!=0 ) {//this UMI is counted
geneCounts[maxg]++;
if (readInfo.size()>0)
geneUmiHash[maxg].insert(iu.first);
};
};
for (uint32 ig=0; ig<nGenes; ig++) {
if (geneCounts[ig] == 0)
continue; //no counts for this gene
nGenePerCB[iCB]++;
nUMIperCB[iCB] += geneCounts[ig];
countCellGeneUMI[countCellGeneUMIindex[iCB+1] + 0] = gID[ig];
countCellGeneUMI[countCellGeneUMIindex[iCB+1] + pSolo.umiDedup.countInd.CR] = geneCounts[ig];
countCellGeneUMIindex[iCB+1] = countCellGeneUMIindex[iCB+1] + countMatStride;//iCB+1 accumulates the index
};
if (readInfo.size()>0) {//record cb/umi for each read
for (uint32 iG=0; iG<nGenes; iG++) {//cycle over genes
uint32 *rGU1=rGU+gReadS[iG];
for (uint32 iR=0; iR<gReadS[iG+1]-gReadS[iG]; iR+=rguStride) {//cycle over reads
uint64 iread1 = rGU1[iR+rguR];
readInfo[iread1].cb = indCB[iCB] ;
uint32 umi=rGU1[iR+rguU];
if (umiCorrected[iG].count(umi)>0)
umi=umiCorrected[iG][umi]; //correct UMI
//cout << iG << "-" << iR << " " <<flush ;
if (geneUmiHash[iG].count(umi)>0) {
readInfo[iread1].umi=umi;
} else {
readInfo[iread1].umi=(uintUMI) -1;
};
};
};
};
};
};
////////////////////////////////////////////////////////////////////////////////////////////////
uint32 SoloFeature::umiArrayCorrect_CR(const uint32 nU0, uintUMI *umiArr, const bool readInfoRec, const bool nUMIyes, unordered_map <uintUMI,uintUMI> &umiCorr)
{
qsort(umiArr, nU0, umiArrayStride*sizeof(uint32), funCompareSolo1);
for (uint64 iu=0; iu<nU0*umiArrayStride; iu+=umiArrayStride) {
umiArr[iu+2] = umiArr[iu+0]; //stores corrected UMI for 1MM_CR and 1MM_Directional
for (uint64 iuu=(nU0-1)*umiArrayStride; iuu>iu; iuu-=umiArrayStride) {
uint32 uuXor = umiArr[iu+0] ^ umiArr[iuu+0];
if ( (uuXor >> (__builtin_ctz(uuXor)/2)*2) <= 3 ) {//1MM
umiArr[iu+2]=umiArr[iuu+0];//replace iu with iuu
break;
};
};
};
if (readInfoRec) {//record corrections
for (uint64 iu=0; iu<nU0*umiArrayStride; iu+=umiArrayStride) {
if (umiArr[iu+0] != umiArr[iu+2])
umiCorr[umiArr[iu+0]]=umiArr[iu+2];
};
};
if (!nUMIyes) {
return 0;
} else {
unordered_set<uintUMI> umiC;
for (uint64 iu=0; iu<nU0*umiArrayStride; iu+=umiArrayStride) {
umiC.insert(umiArr[iu+2]);
};
return umiC.size();
};
};
/////////////////////////////////////////////////////////////////////////////////////////////////////////
uint32 SoloFeature::umiArrayCorrect_Directional(const uint32 nU0, uintUMI *umiArr, const bool readInfoRec, const bool nUMIyes, unordered_map <uintUMI,uintUMI> &umiCorr, const int32 dirCountAdd)
{
qsort(umiArr, nU0, umiArrayStride*sizeof(uint32), funCompareNumbersReverseShift<uint32, 1>);//TODO no need to sort by sequence here, only by count.
for (uint64 iu=0; iu<nU0*umiArrayStride; iu+=umiArrayStride)
umiArr[iu+2] = umiArr[iu+0]; //initialized - it will store corrected UMI for 1MM_CR and 1MM_Directional
uint32 nU1 = nU0;
for (uint64 iu=umiArrayStride; iu<nU0*umiArrayStride; iu+=umiArrayStride) {
for (uint64 iuu=0; iuu<iu; iuu+=umiArrayStride) {
uint32 uuXor = umiArr[iu+0] ^ umiArr[iuu+0];
if ( (uuXor >> (__builtin_ctz(uuXor)/2)*2) <= 3 && umiArr[iuu+1] >= (2*umiArr[iu+1]+dirCountAdd) ) {//1MM && directional condition
umiArr[iu+2]=umiArr[iuu+2];//replace iuu with iu-corrected
nU1--;
break;
};
};
};
if (readInfoRec) {//record corrections
for (uint64 iu=0; iu<nU0*umiArrayStride; iu+=umiArrayStride) {
if (umiArr[iu+0] != umiArr[iu+2])
umiCorr[umiArr[iu+0]]=umiArr[iu+2];
};
};
if (!nUMIyes) {
return 0;
} else {
unordered_set<uintUMI> umiC;
for (uint64 iu=0; iu<nU0*umiArrayStride; iu+=umiArrayStride) {
umiC.insert(umiArr[iu+2]);
};
if (umiC.size()!=nU1)
cout << nU1 <<" "<< umiC.size()<<endl;
return umiC.size();
};
};
|