1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
#include "SoloFeature.h"
#include "serviceFuns.cpp"
#include "SimpleGoodTuring/sgt.h"
#include <math.h>
#include <unordered_set>
#include <map>
#include <random>
double logMultinomialPDFsparse(const vector<double> &ambProfileLogP, const vector<uint32> &countCellGeneUMI, const uint32 stride, const uint32 shift, const int64 start, const uint32 nGenes, const vector<double> &logFactorial);
void SoloFeature::emptyDrops_CR()
{
if (nCB<=pSolo.cellFilter.eDcr.indMin) {
P.inOut->logMain << "emptyDrops_CR filtering: no empty cells found: nCB=" << nCB <<" emptyCellMinIndex="<< pSolo.cellFilter.eDcr.indMin << "\n";
return;
};
time_t rawTime;
time(&rawTime);
P.inOut->logMain << timeMonthDayTime(rawTime) <<" ... starting emptyDrops_CR filtering" <<endl;
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//find genes that were detected in all cells
unordered_set<uint32> featDet;
for (uint32 icb=0; icb<nCB; icb++) {
for (uint32 ig=0; ig<nGenePerCB[icb]; ig++) {
uint32 irec=countCellGeneUMIindex[icb]+ig*countMatStride;
if (countCellGeneUMI[irec + pSolo.umiDedup.countInd.main] > 0)
featDet.insert(countCellGeneUMI[irec]); //gene is present if it's count > 0 for
};
};
uint32 featDetN=featDet.size(); //total number of detected genes - this should have been done already?
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//indCount - total UMI per cell sorted descending
typedef struct {uint32 index, count;} IndCount;
vector<IndCount> indCount(nCB);
for (uint32 ii=0; ii<nCB; ii++) {
indCount[ii].index=ii;
indCount[ii].count=nUMIperCB[ii];
};
std::sort(indCount.begin(), indCount.end(), [](const IndCount &ic1, const IndCount &ic2) {
return (ic1.count>ic2.count) || (ic1.count==ic2.count && ic1.index<ic2.index); //descending order by count, ascending by index
});
//////////////////////////////////////////////////////////////////////////////////////////
//ambient gene counts: sum gene expression over the collection of empty cells
vector<uint32> ambCount(featuresNumber,0);
for (auto icb=pSolo.cellFilter.eDcr.indMin; icb<min(nCB,pSolo.cellFilter.eDcr.indMax); icb++) {
auto icb1 = indCount[icb].index;
for (uint32 ig=0; ig<nGenePerCB[icb1]; ig++) {
auto irec = countCellGeneUMIindex[icb1]+ig*countMatStride;
ambCount[countCellGeneUMI[irec+0]] += countCellGeneUMI[irec + pSolo.umiDedup.countInd.main];
};
};
time(&rawTime);
P.inOut->logMain << timeMonthDayTime(rawTime) <<" ... finished ambient cells counting" <<endl;
////////////////////////////////////////////////////////////////////
//frequencies
map<uint32,uint32> ambCountFreq; //ordered map is not really needed
for (auto &ac: ambCount) {
ambCountFreq[ac]++;
};
if (ambCountFreq.size()<=1) {//only 0-frequency genes are in the empty cells. This is possible because nCB can contain ome cells with no genes - because of multigene
P.inOut->logMain << "emptyDrops_CR filtering: empty cells contain no genes\n";
return;
};
ambCountFreq[0] -= (featuresNumber-featDetN); //subtract genes that were not detected in *any* cells
uint32 maxFreq = ambCountFreq.rbegin()->first;
///////////////////////////////////////////////////////////////////////
//SGT
vector<double> ambCountFreqSGT(maxFreq+1);//up to max frequency
{//SGT estimate of ambient profile
SGT<uint32> sgt;
for (auto &cf: ambCountFreq) {
if (cf.first != 0)
sgt.add(cf.first, cf.second);
};
sgt.analyse();
for (uint32 freq=0; freq<=maxFreq; freq++) {
sgt.estimate(freq, ambCountFreqSGT[freq]);
};
ambCountFreqSGT[0] /= ambCountFreq[0]; //divide freq=0 probability equally among all undetected genes in ambient profile
};
time(&rawTime);
P.inOut->logMain << timeMonthDayTime(rawTime) <<" ... finished SGT"<<endl;
//ambient profile for all features
vector<double> ambProfileLogP(featuresNumber, 0.0);//logarithm
vector<double> ambProfilePnon0, ambProfileLogPnon0;//only non-0 genes
{
for (uint32 ig=0; ig<featuresNumber; ig++) {
if (featDet.count(ig)>0) {//this is only needed if normalization below is performed
ambProfileLogP[ig]=ambCountFreqSGT[ambCount[ig]];
};
};
double norm1 = accumulate(ambProfileLogP.begin(), ambProfileLogP.end(), 0.0);
ambProfileLogPnon0.reserve(ambProfileLogP.size());
ambProfilePnon0.reserve(ambProfileLogP.size());
for (auto &cf: ambProfileLogP) {
if (cf>0) {
cf /= norm1;//normalization is just in case
ambProfilePnon0.push_back(cf);
cf = std::log(cf);
ambProfileLogPnon0.push_back(cf);
};
};
};
time(&rawTime);
P.inOut->logMain << timeMonthDayTime(rawTime) <<" ... finished ambient profile"<<endl;
//select candidate cells
uint32 iCandFirst, iCandLast; //first/last candidate cell in the descending sorted indCount
{
iCandFirst=filteredCells.nCellsSimple;//candidates start right after the cutoff for the simple filtering
uint32 minUMI = int(pSolo.cellFilter.eDcr.umiMinFracMedian * nUMIperCBsorted[filteredCells.nCellsSimple/2]);//this is not exactly median
minUMI = max(pSolo.cellFilter.eDcr.umiMin, minUMI);
for (iCandLast=iCandFirst; iCandLast<iCandFirst+pSolo.cellFilter.eDcr.candMaxN; iCandLast++) {
if (indCount[iCandLast].count<minUMI)
break;
};
--iCandLast;
time(&rawTime);
P.inOut->logMain << timeMonthDayTime(rawTime) << " ... candidate cells: minUMI="<< minUMI << "; number of candidate cells=" << iCandLast-iCandFirst+1 <<endl;
if (iCandLast<iCandFirst)
return; //no candidate cells to consider
};
//calculate observed probability for each candidate
vector<double> obsLogProb(iCandLast-iCandFirst+1);
{
vector<double> logFactorial; //tabulate log-factorial
logFactorial.resize(indCount[iCandFirst].count+1);
logFactorial[1]=0;
for (uint32 cc=2; cc<logFactorial.size(); cc++)
logFactorial[cc]=logFactorial[cc-1]+std::log(cc);
for (uint32 icand=0; icand<obsLogProb.size(); icand++) {
auto icell=indCount[icand+iCandFirst].index;
obsLogProb[icand]=logMultinomialPDFsparse(ambProfileLogP, countCellGeneUMI, countMatStride, pSolo.umiDedup.countInd.main, countCellGeneUMIindex[icell], nGenePerCB[icell], logFactorial);
};
time(&rawTime);
}
P.inOut->logMain << timeMonthDayTime(rawTime) << " ... finished observed logProb" <<endl;
//simulate the probabilities for each cell count
vector<vector<double>> simLogProb(pSolo.cellFilter.eDcr.simN);
{
std::discrete_distribution<uint32> distrAmb ( ambProfilePnon0.begin(), ambProfilePnon0.end() );
auto maxCount=indCount[iCandFirst].count;
//#pragma omp parallel for num_threads(P.runThreadN) //does not increase speed significantly - might be useful for larger number of simulations
for (uint64 isim=0; isim<simLogProb.size(); isim++) {
simLogProb[isim].resize(maxCount+1);
simLogProb[isim][0]=0;
std::mt19937 rngGen(19760110LLU*(isim+1));
vector<uint32> currCounts(ambProfilePnon0.size(), 0);
for (uint32 ic=1; ic<=maxCount; ic++) {
uint32 ig1 = distrAmb(rngGen);
currCounts[ig1]++;
simLogProb[isim][ic] = simLogProb[isim][ic-1] + ambProfileLogPnon0[ig1] + std::log(ic) - std::log(currCounts[ig1]);
};
};
};
time(&rawTime);
P.inOut->logMain << timeMonthDayTime(rawTime) << " ... finished simulations" <<endl;
//p-values
typedef struct{uint32 index; double p; double padj;} IndPPadj;
vector<IndPPadj> pValues(obsLogProb.size());
{
for (uint32 icand=0; icand<obsLogProb.size(); icand++) {
pValues[icand].index=indCount[icand+iCandFirst].index;
auto count1=indCount[icand+iCandFirst].count;
//auto funSumLess = [&] (uint32 n, vector<double> sp) { return n + (sp[count1]<obsLogProb[icand]); };
//uint32 nLowerP = std::accumulate<uint32>(simLogProb.begin(), simLogProb.end(), 0, funSumLess);
uint32 nLowerP=0;
//for (uint64 isim=0; isim<simLogProb.size(); isim++) {
for (auto &sp: simLogProb) {
nLowerP += ( sp[count1]<obsLogProb[icand] );
};
pValues[icand].p=double(1+nLowerP)/(1+simLogProb.size());
};
//BH
std::sort(pValues.begin(), pValues.end(), [](const IndPPadj &ip1, const IndPPadj &ip2) {return (ip1.p < ip2.p);} );
uint32 rank=0;
for (auto &ip: pValues) {
rank++;
ip.padj=ip.p*pValues.size()/rank;
};
for (auto ip=pValues.rbegin()+1; ip!=pValues.rend(); ++ip)
ip->padj = min(ip->padj, (ip-1)->padj); //make it non-decreasing
};
uint32 extraCells=0;
for (auto &ip: pValues) {
if (ip.padj<=pSolo.cellFilter.eDcr.FDR) {
++extraCells;
filteredCells.filtVecBool[ip.index]=true;
};
};
time(&rawTime);
P.inOut->logMain << timeMonthDayTime(rawTime) << " ... finished emptyDrops_CR filtering: number of additional non-ambient cells=" << extraCells <<endl;
return;
};
double logMultinomialPDFsparse(const vector<double> &ambProfileLogP, const vector<uint32> &countCellGeneUMI, const uint32 stride, const uint32 shift, const int64 start, const uint32 nGenes, const vector<double> &logFactorial)
{
uint32 sumCount=0;
double sumLogFac=0.0, sumCountLogP=0.0;
for (uint32 ig=0; ig<nGenes; ig++) {
auto count1 = countCellGeneUMI[start+ig*stride+shift];
sumCount += count1;
sumLogFac += logFactorial[count1];
sumCountLogP += ambProfileLogP[countCellGeneUMI[start+ig*stride]] * count1;
};
return logFactorial[sumCount] - sumLogFac + sumCountLogP;
};
|