1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
|
#include "Transcript.h"
#include "binarySearch2.h"
bool Transcript::transformGenome(Genome &genOut, Transcript & A)
{
uint32 nB=0;//number of out blocks
auto &coBl=genOut.genomeOut.convBlocks;
//uint64 icb=0;
//auto cBit=coBl.begin();
for (uint32 iA=0; iA<nExons; iA++) {//loop over blocks
uint64 r1=exons[iA][EX_R];//r start of a-block
uint64 len=exons[iA][EX_L];
uint64 g1=exons[iA][EX_G];//g start of a-block
uint64 g2=g1+len-1;//end of a-block
//find c-block whose start is on the left of a-block
array<uint64,3> g1array = {g1,0,0};
auto cBit=coBl.begin(); //TODO might reuse previous value of cBit, but need to take care of overlapping mates
cBit = std::upper_bound(cBit, coBl.end(), g1array,
[](const array<uint64,3> &t1, const array<uint64,3> &t2)
{
return t1[0] < t2[0];
});
--cBit;//upperbound finds element > value, need to step back
//icb=binarySearchStride(coBl.data(), coBl.size(), exons[iA][EX_G], icb, 3);
uint64 b1=(*cBit)[0];
uint64 b2=(*cBit)[0]+(*cBit)[1]-1;
uint64 b1o=(*cBit)[2];
/* **********---********----********
* b1 b2
* ++++++++++++++++
* g1 g2
*/
if (g1 <= b2 ) {//fill the first o-block
A.exons[nB][EX_iFrag]=exons[iA][EX_iFrag];
A.exons[nB][EX_R] = r1;
A.exons[nB][EX_G] = b1o + g1 - b1;
if (g2<=b2) {//g2 inside this c-block
A.exons[nB][EX_L]=len;
} else {//g2 is past the end of this c-block
A.exons[nB][EX_L]=b2-g1+1;
};
++nB;
};
++cBit;
while (g2 >= (*cBit)[0]) {//until c-block start is to the right of g2
A.exons[nB][EX_iFrag]=exons[iA][EX_iFrag];
A.exons[nB][EX_G]=(*cBit)[2];
A.exons[nB][EX_R]=r1+(*cBit)[0]-g1;
if (g2 < (*cBit)[0]+(*cBit)[1]) {//g2 inside this c-block
A.exons[nB][EX_L]=g2-(*cBit)[0]+1;
} else {//g2 is past the end of this c-block
A.exons[nB][EX_L]=(*cBit)[1];//full block length
};
++nB;
++cBit;
};
--cBit;
};
if (nB==0)
return false; //transformation did not work
{//merge exons w/o R/G gaps
uint32 nB1 = 1;
for ( uint32 ib=1; ib<nB; ib++) {
if (nB1!=ib) {//copy ib into nB1
for (uint32 ii=0; ii<EX_SIZE; ii++)
A.exons[nB1][ii] = A.exons[ib][ii];
};
if (A.exons[nB1][EX_iFrag]!=A.exons[nB1-1][EX_iFrag]) {//gap between mates, do not adjust
++nB1;
continue;
};
uint64 gapR = A.exons[nB1][EX_R] - A.exons[nB1-1][EX_R] - A.exons[nB1-1][EX_L];
uint64 gapG = A.exons[nB1][EX_G] - A.exons[nB1-1][EX_G] - A.exons[nB1-1][EX_L];
if ( gapR == gapG) {//eliminate both gaps by increasing previous exon length
A.exons[nB1-1][EX_L] += A.exons[nB1][EX_L] + gapR;
} else {//new exon
uint64 minGap = min(gapR, gapG);
if (minGap>0) {//flush the gap to the left
A.exons[nB1][EX_L] += minGap;
A.exons[nB1][EX_G] -= minGap;
A.exons[nB1][EX_R] -= minGap;
};
++nB1;
};
};
nB = nB1;
};
A.nExons=nB;
A.Str = Str;
A.Chr = genOut.chrBin[A.exons[0][EX_G] >> genOut.pGe.gChrBinNbits];
{//recalculate canonSJ, sjAnnot
for (uint64 ia=0; ia<A.nExons-1; ia++) {
A.sjAnnot[ia]=0;
if (A.exons[ia+1][EX_iFrag]!=A.exons[ia][EX_iFrag]) {//mate gap
A.canonSJ[ia]=-3;
continue;
};
uint64 jS=A.exons[ia][EX_G]+A.exons[ia][EX_L];
uint64 jE=A.exons[ia+1][EX_G]-1;//intron start/end
int sjdbInd=binarySearch2(jS, jE, genOut.sjdbStart, genOut.sjdbEnd, genOut.sjdbN);
if (sjdbInd>=0) {//annotated
A.sjAnnot[ia] = 1;
A.canonSJ[ia] = genOut.sjdbMotif[sjdbInd];
if (genOut.sjdbMotif[sjdbInd]==0) {//shift to match annotations
if (A.exons[ia][EX_L] <= genOut.sjdbShiftLeft[sjdbInd]) {
return false; //this align is not allowed
};
A.exons[ia][EX_L] -= genOut.sjdbShiftLeft[sjdbInd];
A.exons[ia+1][EX_G] -= genOut.sjdbShiftLeft[sjdbInd];
};
} else {//unannotated
uint64 gapG=jE-jS+1;
uint64 gapR=A.exons[ia+1][EX_R]-A.exons[ia][EX_R]-A.exons[ia][EX_L];
if (gapR>0) {//insertion
A.canonSJ[ia]=-2;
} else if (gapG>=genOut.P.alignIntronMin) {//junction
A.canonSJ[ia]=0;
if ( genOut.G[jS]==2 && genOut.G[jS+1]==3 && genOut.G[jE-1]==0 && genOut.G[jE]==2 ) {//GTAG
A.canonSJ[ia]=1;
} else if ( genOut.G[jS]==1 && genOut.G[jS+1]==3 && genOut.G[jE-1]==0 && genOut.G[jE]==1 ) {//CTAC
A.canonSJ[ia]=2;
} else if ( genOut.G[jS]==2 && genOut.G[jS+1]==1 && genOut.G[jE-1]==0 && genOut.G[jE]==2 ) {//GCAG
A.canonSJ[ia]=3;
} else if ( genOut.G[jS]==1 && genOut.G[jS+1]==3 && genOut.G[jE-1]==2 && genOut.G[jE]==1 ) {//CTGC
A.canonSJ[ia]=4;
} else if ( genOut.G[jS]==0 && genOut.G[jS+1]==3 && genOut.G[jE-1]==0 && genOut.G[jE]==1 ) {//ATAC
A.canonSJ[ia]=5;
} else if ( genOut.G[jS]==2 && genOut.G[jS+1]==3 && genOut.G[jE-1]==0 && genOut.G[jE]==3 ) {//GTAT
A.canonSJ[ia]=6;
};
} else {//deletion
A.canonSJ[ia]=-1;
};
};
};
};
return true;
};
|