File: Transcript_transformGenome.cpp

package info (click to toggle)
rna-star 2.7.8a%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 3,076 kB
  • sloc: cpp: 20,429; awk: 483; ansic: 470; makefile: 181; sh: 31
file content (167 lines) | stat: -rw-r--r-- 6,516 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
#include "Transcript.h"
#include "binarySearch2.h"

bool Transcript::transformGenome(Genome &genOut, Transcript & A)
{
    uint32 nB=0;//number of out blocks
    auto &coBl=genOut.genomeOut.convBlocks;
    
    //uint64 icb=0;
    
    //auto cBit=coBl.begin();
    for (uint32 iA=0; iA<nExons; iA++) {//loop over blocks
        
        uint64 r1=exons[iA][EX_R];//r start of a-block
        uint64 len=exons[iA][EX_L];        
        uint64 g1=exons[iA][EX_G];//g start of a-block
        uint64 g2=g1+len-1;//end of a-block
        
        
        //find c-block whose start is on the left of a-block
        array<uint64,3> g1array =  {g1,0,0};
        auto cBit=coBl.begin(); //TODO might reuse previous value of cBit, but need to take care of overlapping mates
        cBit = std::upper_bound(cBit, coBl.end(), g1array,
                               [](const array<uint64,3> &t1, const array<uint64,3> &t2)
                               {
                                  return t1[0] < t2[0];
                               });
        
        --cBit;//upperbound finds element > value, need to step back
        //icb=binarySearchStride(coBl.data(), coBl.size(), exons[iA][EX_G], icb, 3);

               
        uint64 b1=(*cBit)[0];
        uint64 b2=(*cBit)[0]+(*cBit)[1]-1;
        uint64 b1o=(*cBit)[2];
        
        /*    **********---********----********
         *    b1      b2
         *        ++++++++++++++++
         *        g1            g2
        */
        
        if (g1 <= b2 ) {//fill the first o-block
            A.exons[nB][EX_iFrag]=exons[iA][EX_iFrag];
            A.exons[nB][EX_R] = r1;
            A.exons[nB][EX_G] = b1o + g1 - b1;
            
            if (g2<=b2) {//g2 inside this c-block
                A.exons[nB][EX_L]=len;
            } else {//g2 is past the end of this c-block
                A.exons[nB][EX_L]=b2-g1+1;
            };
            ++nB;
        };
        
        ++cBit;
        while (g2 >= (*cBit)[0]) {//until c-block start is to the right of g2 
            A.exons[nB][EX_iFrag]=exons[iA][EX_iFrag];            
            A.exons[nB][EX_G]=(*cBit)[2];
            A.exons[nB][EX_R]=r1+(*cBit)[0]-g1;
            
            if (g2 < (*cBit)[0]+(*cBit)[1]) {//g2 inside this c-block
                A.exons[nB][EX_L]=g2-(*cBit)[0]+1;
            } else {//g2 is past the end of this c-block
                A.exons[nB][EX_L]=(*cBit)[1];//full block length
            };
            ++nB;
            ++cBit;
        };
        --cBit;
    };

    if (nB==0)
        return false; //transformation did not work

    {//merge exons w/o R/G gaps
        uint32 nB1 = 1;
        for ( uint32 ib=1; ib<nB; ib++) {
            
            if (nB1!=ib) {//copy ib into nB1
                for (uint32 ii=0; ii<EX_SIZE; ii++)
                    A.exons[nB1][ii] = A.exons[ib][ii];
            };
            
            if (A.exons[nB1][EX_iFrag]!=A.exons[nB1-1][EX_iFrag]) {//gap between mates, do not adjust
                ++nB1;
                continue;
            };

            uint64 gapR = A.exons[nB1][EX_R] - A.exons[nB1-1][EX_R] - A.exons[nB1-1][EX_L];
            uint64 gapG = A.exons[nB1][EX_G] - A.exons[nB1-1][EX_G] - A.exons[nB1-1][EX_L]; 
            
            if ( gapR == gapG) {//eliminate both gaps by increasing previous exon length
                A.exons[nB1-1][EX_L] += A.exons[nB1][EX_L] + gapR;

            } else {//new exon
                uint64 minGap = min(gapR, gapG);
                if (minGap>0) {//flush the gap to the left
                    A.exons[nB1][EX_L] += minGap;
                    A.exons[nB1][EX_G] -= minGap;
                    A.exons[nB1][EX_R] -= minGap;
                };
                ++nB1;
            };
        };
        nB = nB1;
    };
    
    A.nExons=nB;   
    A.Str = Str;        
    A.Chr = genOut.chrBin[A.exons[0][EX_G] >> genOut.pGe.gChrBinNbits];
    
    {//recalculate canonSJ, sjAnnot
        for (uint64 ia=0; ia<A.nExons-1; ia++) {
            A.sjAnnot[ia]=0;
            
            if (A.exons[ia+1][EX_iFrag]!=A.exons[ia][EX_iFrag]) {//mate gap
                A.canonSJ[ia]=-3;
                continue;
            };
            
            uint64 jS=A.exons[ia][EX_G]+A.exons[ia][EX_L];
            uint64 jE=A.exons[ia+1][EX_G]-1;//intron start/end
            int sjdbInd=binarySearch2(jS, jE, genOut.sjdbStart, genOut.sjdbEnd, genOut.sjdbN);
            if (sjdbInd>=0) {//annotated
                A.sjAnnot[ia] = 1;
                A.canonSJ[ia] = genOut.sjdbMotif[sjdbInd];
                if (genOut.sjdbMotif[sjdbInd]==0) {//shift to match annotations
                    if (A.exons[ia][EX_L] <= genOut.sjdbShiftLeft[sjdbInd]) {
                        return false; //this align is not allowed
                    };
                    A.exons[ia][EX_L] -= genOut.sjdbShiftLeft[sjdbInd];
                    A.exons[ia+1][EX_G] -= genOut.sjdbShiftLeft[sjdbInd];
                };

            } else {//unannotated
                uint64 gapG=jE-jS+1;
                uint64 gapR=A.exons[ia+1][EX_R]-A.exons[ia][EX_R]-A.exons[ia][EX_L];
                if (gapR>0) {//insertion
                    A.canonSJ[ia]=-2;
                    
                } else if (gapG>=genOut.P.alignIntronMin) {//junction
                    A.canonSJ[ia]=0;
                    if        ( genOut.G[jS]==2 && genOut.G[jS+1]==3 && genOut.G[jE-1]==0 && genOut.G[jE]==2 ) {//GTAG
                        A.canonSJ[ia]=1;
                    } else if ( genOut.G[jS]==1 && genOut.G[jS+1]==3 && genOut.G[jE-1]==0 && genOut.G[jE]==1 ) {//CTAC
                        A.canonSJ[ia]=2;
                    } else if ( genOut.G[jS]==2 && genOut.G[jS+1]==1 && genOut.G[jE-1]==0 && genOut.G[jE]==2 ) {//GCAG
                        A.canonSJ[ia]=3;
                    } else if ( genOut.G[jS]==1 && genOut.G[jS+1]==3 && genOut.G[jE-1]==2 && genOut.G[jE]==1 ) {//CTGC
                        A.canonSJ[ia]=4;
                    } else if ( genOut.G[jS]==0 && genOut.G[jS+1]==3 && genOut.G[jE-1]==0 && genOut.G[jE]==1 ) {//ATAC
                        A.canonSJ[ia]=5;
                    } else if ( genOut.G[jS]==2 && genOut.G[jS+1]==3 && genOut.G[jE-1]==0 && genOut.G[jE]==3 ) {//GTAT
                        A.canonSJ[ia]=6;
                    };                
                    
                } else {//deletion
                    A.canonSJ[ia]=-1;
                };
            };
        };
    };
    
    return true;
};