File: Transcriptome.cpp

package info (click to toggle)
rna-star 2.7.8a%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 3,076 kB
  • sloc: cpp: 20,429; awk: 483; ansic: 470; makefile: 181; sh: 31
file content (186 lines) | stat: -rwxr-xr-x 6,725 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
#include "Transcriptome.h"
#include "streamFuns.h"
#include "GlobalVariables.h"
#include "ErrorWarning.h"
#include "serviceFuns.cpp"

Transcriptome::Transcriptome (Parameters &Pin) : P(Pin){

    if (!P.quant.yes)
        return;

    trInfoDir = P.pGe.sjdbGTFfile=="-" ? P.pGe.gDir : P.sjdbInsert.outDir; //if GTF file is given at the mapping stage, it's always used for transcript info

    ifstream &geStream = ifstrOpen(trInfoDir+"/geneInfo.tab", ERROR_OUT, "SOLUTION: utilize --sjdbGTFfile /path/to/annotations.gtf option at the genome generation step or mapping step", P);
    geStream >> nGe;
    geID.resize(nGe);
    geName.resize(nGe);
    geBiotype.resize(nGe);
    geStream.ignore(999,'\n');
    for (uint ii=0;ii<nGe;ii++) {
        string line1;
        getline(geStream,line1);
        istringstream stream1(line1);
        stream1 >> geID[ii] >> geName[ii] >> geBiotype[ii];
    };
    geStream.close();

    if ( P.quant.trSAM.yes || P.quant.gene.yes ) {//load exon-transcript structures
        //load tr and ex info
        ifstream & trinfo = ifstrOpen(trInfoDir+"/transcriptInfo.tab", ERROR_OUT, "SOLUTION: utilize --sjdbGTFfile /path/to/annotantions.gtf option at the genome generation step or mapping step",P);
        trinfo >> nTr;
        trS=new uint [nTr];
        trE=new uint [nTr];
        trEmax=new uint [nTr];
        trExI=new uint32 [nTr];
        trExN=new uint16 [nTr];
        trStr=new uint8 [nTr];
        trID.resize(nTr);
        trGene=new uint32 [nTr];
        trLen=new uint32 [nTr];
        
        for (uint32 itr=0; itr<nTr; itr++) {
            uint16 str1;
            trinfo >> trID[itr] >> trS[itr] >> trE[itr] >> trEmax[itr] >> str1 >> trExN[itr] >> trExI[itr] >> trGene[itr];
            trStr[itr]=str1;

            if (!trinfo.good()) {
                ostringstream errOut;
                errOut <<"EXITING because of FATAL GENOME INDEX FILE error: transcriptInfo.tab is corrupt, or is incompatible with the current STAR version\n";
                errOut <<"SOLUTION: re-generate genome index";
                exitWithError(errOut.str(),std::cerr, P.inOut->logMain, EXIT_CODE_GENOME_FILES, P);
            };

        };
        P.inOut->logMain << "Loaded transcript database, nTr="<<nTr<<endl;
        trinfo.close();

        ifstream & exinfo = ifstrOpen(trInfoDir+"/exonInfo.tab", ERROR_OUT, "SOLUTION: utilize --sjdbGTFfile /path/to/annotantions.gtf option at the genome generation step or mapping step", P);
        exinfo >> nEx;
        exSE = new uint32 [2*nEx];
        exLenCum = new uint32 [nEx];
        for (uint32 iex=0; iex<nEx; iex++) {
            exinfo >> exSE[2*iex] >> exSE[2*iex+1] >> exLenCum[iex]; //reading all elements one after another
        };
        for (uint32 ii=0;ii<nTr;ii++) {
            uint32 iex1=trExI[ii]+trExN[ii]-1; //last exon of the transcript
            trLen[ii]=exLenCum[iex1]+exSE[2*iex1+1]-exSE[2*iex1]+1;
        };
        
        P.inOut->logMain << "Loaded exon database, nEx="<<nEx<<endl;
        exinfo.close();
    };
    //load exon-gene structures
    if ( P.quant.geCount.yes ) {
        ifstream & exinfo = ifstrOpen(trInfoDir+"/exonGeTrInfo.tab", ERROR_OUT, "SOLUTION: utilize --sjdbGTFfile /path/to/annotantions.gtf option at the genome generation step or mapping step", P);
        exinfo >> exG.nEx;
        exG.s=new uint64[exG.nEx];
        exG.e=new uint64[exG.nEx];
        exG.eMax=new uint64[exG.nEx];
        exG.str=new uint8[exG.nEx];
        exG.g=new uint32[exG.nEx];
        exG.t=new uint32[exG.nEx];
        for (uint ii=0;ii<exG.nEx;ii++) {
            int str1;
            exinfo >> exG.s[ii] >> exG.e[ii] >> str1 >> exG.g[ii] >> exG.t[ii];
            exG.str[ii] = (uint8) str1;
        };
        exinfo.close();
        //calculate eMax
        exG.eMax[0]=exG.e[0];
        for (uint iex=1;iex<exG.nEx;iex++) {
            exG.eMax[iex]=max(exG.eMax[iex-1],exG.e[iex]);
        };
    };

    if ( P.quant.geneFull.yes ) {
        ifstream & exinfo = ifstrOpen(trInfoDir+"/exonGeTrInfo.tab", ERROR_OUT, "SOLUTION: utilize --sjdbGTFfile /path/to/annotantions.gtf option at the genome generation step or mapping step", P);
        exinfo >> exG.nEx;

        geneFull.s=new uint64[nGe];
        geneFull.e=new uint64[nGe];
        geneFull.eMax=new uint64[nGe];
        geneFull.g=new uint32[nGe];
        geneFull.str=new uint8[nGe];

        for (uint ig=0;ig<nGe;ig++) {
            geneFull.s[ig]=-1;//largest uint64
            geneFull.e[ig]=0;
        };

        for (uint ii=0;ii<exG.nEx;ii++) {
            uint64 s1,e1,str1,g1,t1;
            exinfo >> s1 >> e1 >> str1 >> g1 >> t1;
            geneFull.s[g1]=min(geneFull.s[g1],s1);
            geneFull.e[g1]=max(geneFull.e[g1],e1);
            geneFull.str[g1] = (uint8) str1;
        };
        exinfo.close();

        uint64 *gF=new uint64 [4*nGe];
        for (uint ii=0;ii<nGe;ii++) {
            gF[4*ii]   = geneFull.s[ii];
            gF[4*ii+1] = geneFull.e[ii];
            gF[4*ii+2] = geneFull.str[ii];
            gF[4*ii+3] = ii;
        };

        qsort((void*) gF, nGe, sizeof(uint64)*4, funCompareArrays<uint64,2>);

        for (uint ii=0;ii<nGe;ii++) {
            geneFull.s[ii]   = gF[4*ii];
            geneFull.e[ii]   = gF[4*ii+1];
            geneFull.str[ii] = gF[4*ii+2];
            geneFull.g[ii]   = gF[4*ii+3];
        };

        //calculate eMax
        geneFull.eMax[0]=geneFull.e[0];
        for (uint iex=1;iex<nGe;iex++) {
            geneFull.eMax[iex]=max(geneFull.eMax[iex-1],geneFull.e[iex]);
        };
    };

};

void Transcriptome::quantsAllocate() {
    if ( P.quant.geCount.yes ) {
        quants = new Quantifications (nGe);
    };
};

void Transcriptome::quantsOutput() {
    ofstream qOut(P.quant.geCount.outFile);
    qOut << "N_unmapped";
    for (int itype=0; itype<quants->geneCounts.nType; itype++) {
        qOut << "\t" <<g_statsAll.unmappedAll;
    };
    qOut << "\n";

    qOut << "N_multimapping";
    for (int itype=0; itype<quants->geneCounts.nType; itype++){
        qOut << "\t" <<quants->geneCounts.cMulti;
    };
    qOut << "\n";

    qOut << "N_noFeature";
    for (int itype=0; itype<quants->geneCounts.nType; itype++){
        qOut << "\t" <<quants->geneCounts.cNone[itype];
    };
    qOut << "\n";

    qOut << "N_ambiguous";
    for (int itype=0; itype<quants->geneCounts.nType; itype++) {
        qOut << "\t" <<quants->geneCounts.cAmbig[itype];
    };
    qOut << "\n";

    for (uint32 ig=0; ig<nGe; ig++) {
        qOut << geID[ig];
        for (int itype=0; itype<quants->geneCounts.nType; itype++) {
            qOut << "\t" <<quants->geneCounts.gCount[itype][ig];
        };
        qOut << "\n";
    };
    qOut.close();
};