1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
|
#include <algorithm>
#include <cassert>
#include <climits>
#include <cstdio>
#include <limits>
#include <vector>
extern "C" {
#define SIMDE_ENABLE_NATIVE_ALIASES
#include <simde/x86/avx2.h> // AVX2 and lower
}
#include "opal.h"
// I define aliases for SSE intrinsics, so they can be used in code not depending on SSE generation.
// If available, AVX2 is used because it has two times bigger register, thus everything is two times faster.
#ifdef __AVX2__
const int SIMD_REG_SIZE = 256; //!< number of bits in register
typedef __m256i __mxxxi; //!< represents register containing integers
#define _mmxxx_load_si _mm256_load_si256
#define _mmxxx_store_si _mm256_store_si256
#define _mmxxx_and_si _mm256_and_si256
#define _mmxxx_testz_si _mm256_testz_si256
#define _mmxxx_adds_epi8 _mm256_adds_epi8
#define _mmxxx_subs_epi8 _mm256_subs_epi8
#define _mmxxx_min_epu8 _mm256_min_epu8
#define _mmxxx_min_epi8 _mm256_min_epi8
#define _mmxxx_max_epu8 _mm256_max_epu8
#define _mmxxx_max_epi8 _mm256_max_epi8
#define _mmxxx_set1_epi8 _mm256_set1_epi8
#define _mmxxx_cmpgt_epi8 _mm256_cmpgt_epi8
#define _mmxxx_adds_epi16 _mm256_adds_epi16
#define _mmxxx_subs_epi16 _mm256_subs_epi16
#define _mmxxx_min_epi16 _mm256_min_epi16
#define _mmxxx_max_epi16 _mm256_max_epi16
#define _mmxxx_set1_epi16 _mm256_set1_epi16
#define _mmxxx_cmpgt_epi16 _mm256_cmpgt_epi16
#define _mmxxx_add_epi32 _mm256_add_epi32
#define _mmxxx_sub_epi32 _mm256_sub_epi32
#define _mmxxx_min_epi32 _mm256_min_epi32
#define _mmxxx_max_epi32 _mm256_max_epi32
#define _mmxxx_set1_epi32 _mm256_set1_epi32
#define _mmxxx_cmpgt_epi32 _mm256_cmpgt_epi32
#else // SSE4.1
const int SIMD_REG_SIZE = 128;
typedef __m128i __mxxxi;
#define _mmxxx_load_si _mm_load_si128
#define _mmxxx_store_si _mm_store_si128
#define _mmxxx_and_si _mm_and_si128
#define _mmxxx_testz_si _mm_testz_si128
#define _mmxxx_adds_epi8 _mm_adds_epi8
#define _mmxxx_subs_epi8 _mm_subs_epi8
#define _mmxxx_min_epu8 _mm_min_epu8
#define _mmxxx_min_epi8 _mm_min_epi8
#define _mmxxx_max_epu8 _mm_max_epu8
#define _mmxxx_max_epi8 _mm_max_epi8
#define _mmxxx_set1_epi8 _mm_set1_epi8
#define _mmxxx_cmpgt_epi8 _mm_cmpgt_epi8
#define _mmxxx_adds_epi16 _mm_adds_epi16
#define _mmxxx_subs_epi16 _mm_subs_epi16
#define _mmxxx_min_epi16 _mm_min_epi16
#define _mmxxx_max_epi16 _mm_max_epi16
#define _mmxxx_set1_epi16 _mm_set1_epi16
#define _mmxxx_cmpgt_epi16 _mm_cmpgt_epi16
#define _mmxxx_add_epi32 _mm_add_epi32
#define _mmxxx_sub_epi32 _mm_sub_epi32
#define _mmxxx_min_epi32 _mm_min_epi32
#define _mmxxx_max_epi32 _mm_max_epi32
#define _mmxxx_set1_epi32 _mm_set1_epi32
#define _mmxxx_cmpgt_epi32 _mm_cmpgt_epi32
#endif
//------------------------------------ SIMD PARAMETERS ---------------------------------//
static inline int simdIsAllZeroes(const __mxxxi& a) {
return _mmxxx_testz_si(a, a);
}
/**
* Contains parameters and SIMD instructions specific for certain score type.
*/
template<typename T> struct SimdSW {};
template<>
struct SimdSW<char> {
typedef char type; //!< Type that will be used for score
static const int numSeqs = SIMD_REG_SIZE / (8 * sizeof(char)); //!< Number of sequences that can be done in parallel.
static const bool satArthm = true; //!< True if saturation arithmetic is used, false otherwise.
static const bool negRange = true; //!< True if it uses negative range for score representation, goes with saturation
static inline __mxxxi add(const __mxxxi& a, const __mxxxi& b) { return _mmxxx_adds_epi8(a, b); }
static inline __mxxxi sub(const __mxxxi& a, const __mxxxi& b) { return _mmxxx_subs_epi8(a, b); }
static inline __mxxxi min(const __mxxxi& a, const __mxxxi& b) { return _mmxxx_min_epu8(a, b); }
static inline __mxxxi max(const __mxxxi& a, const __mxxxi& b) { return _mmxxx_max_epu8(a, b); }
static inline __mxxxi cmpgt(const __mxxxi& a, const __mxxxi& b) { return _mmxxx_cmpgt_epi8(a, b); }
static inline __mxxxi set1(int a) { return _mmxxx_set1_epi8(a); }
};
template<>
struct SimdSW<short> {
typedef short type;
static const int numSeqs = SIMD_REG_SIZE / (8 * sizeof(short));
static const bool satArthm = true;
static const bool negRange = false;
static inline __mxxxi add(const __mxxxi& a, const __mxxxi& b) { return _mmxxx_adds_epi16(a, b); }
static inline __mxxxi sub(const __mxxxi& a, const __mxxxi& b) { return _mmxxx_subs_epi16(a, b); }
static inline __mxxxi min(const __mxxxi& a, const __mxxxi& b) { return _mmxxx_min_epi16(a, b); }
static inline __mxxxi max(const __mxxxi& a, const __mxxxi& b) { return _mmxxx_max_epi16(a, b); }
static inline __mxxxi cmpgt(const __mxxxi& a, const __mxxxi& b) { return _mmxxx_cmpgt_epi16(a, b); }
static inline __mxxxi set1(int a) { return _mmxxx_set1_epi16(a); }
};
template<>
struct SimdSW<int> {
typedef int type;
static const int numSeqs = SIMD_REG_SIZE / (8 * sizeof(int));
static const bool satArthm = false;
static const bool negRange = false;
static inline __mxxxi add(const __mxxxi& a, const __mxxxi& b) { return _mmxxx_add_epi32(a, b); }
static inline __mxxxi sub(const __mxxxi& a, const __mxxxi& b) { return _mmxxx_sub_epi32(a, b); }
static inline __mxxxi min(const __mxxxi& a, const __mxxxi& b) { return _mmxxx_min_epi32(a, b); }
static inline __mxxxi max(const __mxxxi& a, const __mxxxi& b) { return _mmxxx_max_epi32(a, b); }
static inline __mxxxi cmpgt(const __mxxxi& a, const __mxxxi& b) { return _mmxxx_cmpgt_epi32(a, b); }
static inline __mxxxi set1(int a) { return _mmxxx_set1_epi32(a); }
};
//--------------------------------------------------------------------------------------//
static bool loadNextSequence(int &nextDbSeqIdx, int dbLength, int &currDbSeqIdx, unsigned char * &currDbSeqPos,
int &currDbSeqLength, unsigned char ** db, int dbSeqLengths[], bool calculated[],
int &numEndedDbSeqs);
// For debugging
template<class SIMD>
void print_mmxxxi(__mxxxi mm) {
typename SIMD::type unpacked[SIMD::numSeqs] __attribute__((aligned(SIMD_REG_SIZE / 8)));
_mmxxx_store_si((__mxxxi*)unpacked, mm);
for (int i = 0; i < SIMD::numSeqs; i++)
printf("%d ", unpacked[i]);
}
// This structure represents cell in dynamic programming matrix, but only with E and H values.
struct CellEH {
__mxxxi H;
__mxxxi E;
};
/**
* @param stopOnOverflow If true, function will stop when first overflow happens.
* If false, function will not stop but continue with next sequence.
*
*/
template<class SIMD>
static int searchDatabaseSW_(unsigned char query[], int queryLength,
unsigned char** db, int dbLength, int dbSeqLengths[],
int gapOpen, int gapExt, int* scoreMatrix, int alphabetLength,
OpalSearchResult* results[], const int searchType, bool calculated[],
int overflowMethod) {
const typename SIMD::type LOWER_BOUND = std::numeric_limits<typename SIMD::type>::min();
const typename SIMD::type UPPER_BOUND = std::numeric_limits<typename SIMD::type>::max();
bool overflowOccured = false; // True if overflow was detected at least once.
// ----------------------- CHECK ARGUMENTS -------------------------- //
// Check if Q, R or scoreMatrix have values too big for used score type
if (gapOpen < LOWER_BOUND || UPPER_BOUND < gapOpen || gapExt < LOWER_BOUND || UPPER_BOUND < gapExt) {
return 1;
}
if (!SIMD::satArthm) {
// These extra limits are enforced so overflow could be detected more efficiently
if (gapOpen <= LOWER_BOUND/2 || UPPER_BOUND/2 <= gapOpen || gapExt <= LOWER_BOUND/2 || UPPER_BOUND/2 <= gapExt) {
return OPAL_ERR_OVERFLOW;
}
}
for (int r = 0; r < alphabetLength; r++)
for (int c = 0; c < alphabetLength; c++) {
int score = scoreMatrix[r * alphabetLength + c];
if (score < LOWER_BOUND || UPPER_BOUND < score) {
return OPAL_ERR_OVERFLOW;
}
if (!SIMD::satArthm) {
if (score <= LOWER_BOUND/2 || UPPER_BOUND/2 <= score)
return OPAL_ERR_OVERFLOW;
}
}
// ------------------------------------------------------------------ //
// ------------------------ INITIALIZATION -------------------------- //
__mxxxi zeroes = SIMD::set1(0);
__mxxxi scoreZeroes; // 0 normally, but lower bound if using negative range
if (SIMD::negRange) {
scoreZeroes = SIMD::set1(LOWER_BOUND);
} else {
scoreZeroes = zeroes;
}
int numEndedDbSeqs = 0; // Number of sequences that ended
int nextDbSeqIdx = 0; // Index in db of next sequence that we will try to load.
// Index in db. -1 for null sequence (null sequence == no sequence).
int currDbSeqsIdxs[SIMD::numSeqs];
// Pointer to current element for each current database sequence. 0 for null sequence.
unsigned char* currDbSeqsPos[SIMD::numSeqs];
// Lengths of remaining parts of sequences. -1 for null sequence.
int currDbSeqsLengths[SIMD::numSeqs];
// Needed in order to find the most early result, which is a nice condition to have.
int currDbSeqsBestScore[SIMD::numSeqs];
// Row index of best score for each current database sequence.
int currDbSeqsBestScoreRow[SIMD::numSeqs];
// Column index of best score for each current database sequence.
int currDbSeqsBestScoreColumn[SIMD::numSeqs];
// Profile query -> here we store preprocessed score data needed in core loop.
// It is recalculated for each column.
__mxxxi P[alphabetLength];
// Load initial sequences
for (int i = 0; i < SIMD::numSeqs; i++) {
currDbSeqsBestScore[i] = LOWER_BOUND;
loadNextSequence(nextDbSeqIdx, dbLength, currDbSeqsIdxs[i], currDbSeqsPos[i],
currDbSeqsLengths[i], db, dbSeqLengths, calculated, numEndedDbSeqs);
}
// Q is gap open penalty, R is gap ext penalty.
__mxxxi Q = SIMD::set1(gapOpen);
__mxxxi R = SIMD::set1(gapExt);
int rowsWithImprovement[queryLength]; // Indexes of rows where one of sequences improved score.
// Previous Hs, previous Es, previous F, all signed short.
CellEH prevColumn[queryLength]; // Stores results of previous column in matrix.
// Initialize all values to 0
for (int i = 0; i < queryLength; i++) {
prevColumn[i].H = prevColumn[i].E = scoreZeroes;
}
__mxxxi maxH = scoreZeroes; // Best score in sequence
// ------------------------------------------------------------------ //
// For each column
while (numEndedDbSeqs < dbLength) {
// -------------------- CALCULATE QUERY PROFILE ------------------------- //
// TODO: Rognes uses pshufb here, I don't know how/why?
typename SIMD::type profileRow[SIMD::numSeqs] __attribute__((aligned(SIMD_REG_SIZE / 8)));
for (unsigned char letter = 0; letter < alphabetLength; letter++) {
int* scoreMatrixRow = scoreMatrix + letter*alphabetLength;
for (int i = 0; i < SIMD::numSeqs; i++) {
unsigned char* dbSeqPos = currDbSeqsPos[i];
if (dbSeqPos != 0)
profileRow[i] = (typename SIMD::type)scoreMatrixRow[*dbSeqPos];
}
P[letter] = _mmxxx_load_si((__mxxxi const*)profileRow);
}
// ---------------------------------------------------------------------- //
// Previous cells: u - up, l - left, ul - up left
__mxxxi uF, uH, ulH;
uF = uH = ulH = scoreZeroes; // F[-1, c] = H[-1, c] = H[-1, c-1] = 0
__mxxxi ofTest = scoreZeroes; // Used for detecting the overflow when not using saturated ar
int rowsWithImprovementLength = 0;
// ----------------------- CORE LOOP (ONE COLUMN) ----------------------- //
for (int r = 0; r < queryLength; r++) { // For each cell in column
// Calculate E = max(lH-Q, lE-R)
__mxxxi E = SIMD::max(SIMD::sub(prevColumn[r].H, Q), SIMD::sub(prevColumn[r].E, R));
// Calculate F = max(uH-Q, uF-R)
__mxxxi F = SIMD::max(SIMD::sub(uH, Q), SIMD::sub(uF, R));
// Calculate H
__mxxxi H = SIMD::max(F, E);
if (!SIMD::negRange) {
// If not using negative range, then H could be negative at this moment so we need this
H = SIMD::max(H, zeroes);
}
__mxxxi ulH_P = SIMD::add(ulH, P[query[r]]);
// If using negative range: if ulH_P >= 0 then we have overflow
H = SIMD::max(H, ulH_P);
// If using negative range: H will always be negative, even if ulH_P overflowed
// Save data needed for overflow detection. Not more then one condition will fire
if (SIMD::negRange)
ofTest = _mmxxx_and_si(ofTest, ulH_P);
if (!SIMD::satArthm)
ofTest = SIMD::min(ofTest, ulH_P);
// If we need end location, remember row with best score.
if (searchType != OPAL_SEARCH_SCORE) {
// We remember rows that had max scores, in order to find out the row of best score.
rowsWithImprovement[rowsWithImprovementLength] = r;
// TODO(martin): simdIsAllZeroes seems to bring significant slowdown, but I could
// not find way to avoid it.
rowsWithImprovementLength += 1 - simdIsAllZeroes(SIMD::cmpgt(H, maxH));
}
maxH = SIMD::max(maxH, H); // update best score
// Set uF, uH, ulH
uF = F;
uH = H;
ulH = prevColumn[r].H;
// Remeber values so they can be used in next column.
prevColumn[r].E = E;
prevColumn[r].H = H;
// For saturated: score is biased everywhere, but just score: E, F, H
// Also, all scores except ulH_P certainly have value < 0
}
// ---------------------------------------------------------------------- //
for (int seqIdx = 0; seqIdx < SIMD::numSeqs; seqIdx++) {
currDbSeqsLengths[seqIdx] -= currDbSeqsLengths[seqIdx] > 0;
}
typename SIMD::type unpackedMaxH[SIMD::numSeqs] __attribute__((aligned(SIMD_REG_SIZE / 8)));
_mmxxx_store_si((__mxxxi*)unpackedMaxH, maxH);
// ------------------------ OVERFLOW DETECTION -------------------------- //
bool overflowed[SIMD::numSeqs];
if (!SIMD::satArthm) {
// This check is based on following assumptions:
// - overflow wraps
// - Q, R and all scores from scoreMatrix are between LOWER_BOUND/2 and UPPER_BOUND/2 exclusive
typename SIMD::type unpackedOfTest[SIMD::numSeqs] __attribute__((aligned(SIMD_REG_SIZE / 8)));
_mmxxx_store_si((__mxxxi*)unpackedOfTest, ofTest);
for (int i = 0; i < SIMD::numSeqs; i++) {
overflowed[i] = currDbSeqsPos[i] != 0 && unpackedOfTest[i] <= LOWER_BOUND / 2;
if (overflowMethod == OPAL_OVERFLOW_BUCKETS && overflowed[i]) {
// In buckets method, we stop calculation when overflow is detected.
return OPAL_ERR_OVERFLOW;
}
}
} else {
if (SIMD::negRange) {
// Since I use saturation, I check if minUlH_P was non negative
typename SIMD::type unpackedOfTest[SIMD::numSeqs] __attribute__((aligned(SIMD_REG_SIZE / 8)));
_mmxxx_store_si((__mxxxi*)unpackedOfTest, ofTest);
for (int i = 0; i < SIMD::numSeqs; i++) {
overflowed[i] = currDbSeqsPos[i] != 0 && unpackedOfTest[i] >= 0;
if (overflowMethod == OPAL_OVERFLOW_BUCKETS && overflowed[i]) {
return OPAL_ERR_OVERFLOW;
}
}
} else {
// I check if upper bound is reached
for (int i = 0; i < SIMD::numSeqs; i++) {
overflowed[i] = currDbSeqsPos[i] != 0 && unpackedMaxH[i] == UPPER_BOUND;
if (overflowMethod == OPAL_OVERFLOW_BUCKETS && overflowed[i]) {
return OPAL_ERR_OVERFLOW;
}
}
}
}
// ---------------------------------------------------------------------- //
bool overflowDetected = false; // True if overflow was detected in last column.
bool sequenceEnded = false; // True if a sequence ended in last column.
for (int seqIdx = 0; seqIdx < SIMD::numSeqs; seqIdx++) {
overflowDetected = overflowDetected || overflowed[seqIdx];
sequenceEnded = sequenceEnded || (currDbSeqsLengths[seqIdx] == 0);
}
overflowOccured = overflowOccured || overflowDetected;
// --------- Update end location of alignment ----------- //
if (searchType != OPAL_SEARCH_SCORE) {
for (int i = 0; i < rowsWithImprovementLength; i++) {
int r = rowsWithImprovement[i];
typename SIMD::type unpackedH[SIMD::numSeqs] __attribute__((aligned(SIMD_REG_SIZE / 8)));
_mmxxx_store_si((__mxxxi*)unpackedH, prevColumn[r].H);
for (int j = 0; j < SIMD::numSeqs; j++) {
if (currDbSeqsPos[j] != 0 && !overflowed[j]) { // If not null sequence or overflowedresult->endLocationQuery =
if (unpackedH[j] > currDbSeqsBestScore[j]) {
currDbSeqsBestScore[j] = unpackedH[j];
currDbSeqsBestScoreRow[j] = r;
currDbSeqsBestScoreColumn[j] = dbSeqLengths[currDbSeqsIdxs[j]]
- currDbSeqsLengths[j] - 1;
}
}
}
}
}
// ------------------------------------------------------ //
// --------------------- CHECK AND HANDLE SEQUENCE END ------------------ //
if (overflowDetected || sequenceEnded) { // If at least one sequence ended
typename SIMD::type resetMask[SIMD::numSeqs] __attribute__((aligned(SIMD_REG_SIZE / 8)));
for (int i = 0; i < SIMD::numSeqs; i++) {
if (currDbSeqsPos[i] != 0) { // If not null sequence
if (overflowed[i] || currDbSeqsLengths[i] == 0) { // If sequence ended
numEndedDbSeqs++;
if (!overflowed[i]) {
// Save score and mark as calculated
calculated[currDbSeqsIdxs[i]] = true;
opalSearchResultSetScore(results[currDbSeqsIdxs[i]], unpackedMaxH[i]);
if (SIMD::negRange) {
results[currDbSeqsIdxs[i]]->score -= LOWER_BOUND;
}
if (searchType != OPAL_SEARCH_SCORE) {
results[currDbSeqsIdxs[i]]->endLocationQuery = currDbSeqsBestScoreRow[i];
results[currDbSeqsIdxs[i]]->endLocationTarget = currDbSeqsBestScoreColumn[i];
} else {
results[currDbSeqsIdxs[i]]->endLocationQuery = -1;
results[currDbSeqsIdxs[i]]->endLocationTarget = -1;
}
}
currDbSeqsBestScore[i] = LOWER_BOUND;
// Load next sequence
loadNextSequence(nextDbSeqIdx, dbLength, currDbSeqsIdxs[i], currDbSeqsPos[i],
currDbSeqsLengths[i], db, dbSeqLengths, calculated, numEndedDbSeqs);
// If negative range, sets to LOWER_BOUND when used with saturated add and value < 0,
// otherwise sets to zero when used with and.
resetMask[i] = SIMD::negRange ? LOWER_BOUND : 0;
} else {
// Does not change anything when used with saturated add / and.
resetMask[i] = SIMD::negRange ? 0 : -1;
if (currDbSeqsPos[i] != 0)
currDbSeqsPos[i]++; // If not new and not null, move for one element
}
}
}
// Reset previous columns (Es and Hs) and maxH
__mxxxi resetMaskPacked = _mmxxx_load_si((__mxxxi const*)resetMask);
if (SIMD::negRange) {
for (int i = 0; i < queryLength; i++) {
prevColumn[i].H = SIMD::add(prevColumn[i].H, resetMaskPacked);
prevColumn[i].E = SIMD::add(prevColumn[i].E, resetMaskPacked);
}
maxH = SIMD::add(maxH, resetMaskPacked);
} else {
for (int i = 0; i < queryLength; i++) {
prevColumn[i].H = _mmxxx_and_si(prevColumn[i].H, resetMaskPacked);
prevColumn[i].E = _mmxxx_and_si(prevColumn[i].E, resetMaskPacked);
}
maxH = _mmxxx_and_si(maxH, resetMaskPacked);
}
} else { // If no sequences ended
// Move for one element in all sequences
for (int i = 0; i < SIMD::numSeqs; i++)
currDbSeqsPos[i] += (currDbSeqsPos[i] != 0);
}
// ---------------------------------------------------------------------- //
}
if (overflowOccured) {
return OPAL_ERR_OVERFLOW;
}
return 0;
}
static inline bool loadNextSequence(int &nextDbSeqIdx, int dbLength, int &currDbSeqIdx, unsigned char* &currDbSeqPos,
int &currDbSeqLength, unsigned char** db, int dbSeqLengths[], bool calculated[],
int &numEndedDbSeqs) {
while (nextDbSeqIdx < dbLength && calculated[nextDbSeqIdx]) {
nextDbSeqIdx++;
numEndedDbSeqs++;
}
if (nextDbSeqIdx < dbLength) { // If there is sequence to load
currDbSeqIdx = nextDbSeqIdx;
currDbSeqPos = db[nextDbSeqIdx];
currDbSeqLength = dbSeqLengths[nextDbSeqIdx];
nextDbSeqIdx++;
return true;
} else { // If there are no more sequences to load, load "null" sequence
currDbSeqIdx = currDbSeqLength = -1; // Set to -1 if there are no more sequences
currDbSeqPos = 0;
return false;
}
}
/**
* @param If skip[i] is true, result for sequence #i will not be calculated.
* If skip is NULL, all results will be calculated.
*/
static int searchDatabaseSW(unsigned char query[], int queryLength,
unsigned char** db, int dbLength, int dbSeqLengths[],
int gapOpen, int gapExt, int* scoreMatrix, int alphabetLength,
OpalSearchResult* results[], const int searchType, bool skip[], int overflowMethod) {
int resultCode = 0;
// Do buckets only if using buckets overflow method.
const int chunkSize = overflowMethod == OPAL_OVERFLOW_BUCKETS ? 1024 : dbLength;
bool* calculated = new bool[chunkSize];
for (int startIdx = 0; startIdx < dbLength; startIdx += chunkSize) {
unsigned char** db_ = db + startIdx;
int* dbSeqLengths_ = dbSeqLengths + startIdx;
OpalSearchResult** results_ = results + startIdx;
int dbLength_ = startIdx + chunkSize >= dbLength ? dbLength - startIdx : chunkSize;
for (int i = 0; i < dbLength_; i++) {
calculated[i] = skip ? skip[i] : false;
}
resultCode = searchDatabaseSW_< SimdSW<char> >(
query, queryLength, db_, dbLength_, dbSeqLengths_,
gapOpen, gapExt, scoreMatrix, alphabetLength, results_,
searchType, calculated, overflowMethod);
if (resultCode == OPAL_ERR_OVERFLOW) {
resultCode = searchDatabaseSW_< SimdSW<short> >(
query, queryLength, db_, dbLength_, dbSeqLengths_,
gapOpen, gapExt, scoreMatrix, alphabetLength, results_,
searchType, calculated, overflowMethod);
if (resultCode == OPAL_ERR_OVERFLOW) {
resultCode = searchDatabaseSW_< SimdSW<int> >(
query, queryLength,
db_, dbLength_, dbSeqLengths_,
gapOpen, gapExt, scoreMatrix, alphabetLength, results_,
searchType, calculated, overflowMethod);
if (resultCode != 0)
break;
}
}
}
delete[] calculated;
return resultCode;
}
//------------------------------------ SIMD PARAMETERS ---------------------------------//
/**
* Contains parameters and SIMD instructions specific for certain score type.
*/
template<typename T> class Simd {};
template<>
struct Simd<char> {
typedef char type; //!< Type that will be used for score
static const int numSeqs = SIMD_REG_SIZE / (8 * sizeof(char)); //!< Number of sequences that can be done in parallel.
static const bool satArthm = true; //!< True if saturation arithmetic is used, false otherwise.
static inline __mxxxi add(const __mxxxi& a, const __mxxxi& b) { return _mmxxx_adds_epi8(a, b); }
static inline __mxxxi sub(const __mxxxi& a, const __mxxxi& b) { return _mmxxx_subs_epi8(a, b); }
static inline __mxxxi min(const __mxxxi& a, const __mxxxi& b) { return _mmxxx_min_epi8(a, b); }
static inline __mxxxi max(const __mxxxi& a, const __mxxxi& b) { return _mmxxx_max_epi8(a, b); }
static inline __mxxxi cmpgt(const __mxxxi& a, const __mxxxi& b) { return _mmxxx_cmpgt_epi8(a, b); }
static inline __mxxxi set1(int a) { return _mmxxx_set1_epi8(a); }
};
template<>
struct Simd<short> {
typedef short type;
static const int numSeqs = SIMD_REG_SIZE / (8 * sizeof(short));
static const bool satArthm = true;
static inline __mxxxi add(const __mxxxi& a, const __mxxxi& b) { return _mmxxx_adds_epi16(a, b); }
static inline __mxxxi sub(const __mxxxi& a, const __mxxxi& b) { return _mmxxx_subs_epi16(a, b); }
static inline __mxxxi min(const __mxxxi& a, const __mxxxi& b) { return _mmxxx_min_epi16(a, b); }
static inline __mxxxi max(const __mxxxi& a, const __mxxxi& b) { return _mmxxx_max_epi16(a, b); }
static inline __mxxxi cmpgt(const __mxxxi& a, const __mxxxi& b) { return _mmxxx_cmpgt_epi16(a, b); }
static inline __mxxxi set1(int a) { return _mmxxx_set1_epi16(a); }
};
template<>
struct Simd<int> {
typedef int type;
static const int numSeqs = SIMD_REG_SIZE / (8 * sizeof(int));
static const bool satArthm = false;
static inline __mxxxi add(const __mxxxi& a, const __mxxxi& b) { return _mmxxx_add_epi32(a, b); }
static inline __mxxxi sub(const __mxxxi& a, const __mxxxi& b) { return _mmxxx_sub_epi32(a, b); }
static inline __mxxxi min(const __mxxxi& a, const __mxxxi& b) { return _mmxxx_min_epi32(a, b); }
static inline __mxxxi max(const __mxxxi& a, const __mxxxi& b) { return _mmxxx_max_epi32(a, b); }
static inline __mxxxi cmpgt(const __mxxxi& a, const __mxxxi& b) { return _mmxxx_cmpgt_epi32(a, b); }
static inline __mxxxi set1(int a) { return _mmxxx_set1_epi32(a); }
};
//--------------------------------------------------------------------------------------//
template<class SIMD, int MODE>
static int searchDatabase_(unsigned char query[], int queryLength,
unsigned char** db, int dbLength, int dbSeqLengths[],
int gapOpen, int gapExt, int* scoreMatrix, int alphabetLength,
OpalSearchResult* results[], const int searchType, bool calculated[], int overflowMethod) {
static const typename SIMD::type LOWER_BOUND = std::numeric_limits<typename SIMD::type>::min();
static const typename SIMD::type UPPER_BOUND = std::numeric_limits<typename SIMD::type>::max();
// Used to represent -inf. Must be larger then lower bound to avoid overflow.
// TOOD(martin): Is it enough to use gapExt here? Should I use gapOpen instead?
static const typename SIMD::type LOWER_SCORE_BOUND = LOWER_BOUND + gapExt;
bool overflowOccured = false; // True if oveflow was detected at least once.
// ----------------------- CHECK ARGUMENTS -------------------------- //
// Check if Q, R or scoreMatrix have values too big for used score type
if (gapOpen < LOWER_BOUND || UPPER_BOUND < gapOpen || gapExt < LOWER_BOUND || UPPER_BOUND < gapExt) {
return 1;
}
if (!SIMD::satArthm) {
// These extra limits are enforced so overflow could be detected more efficiently
if (gapOpen <= LOWER_BOUND/2 || UPPER_BOUND/2 <= gapOpen || gapExt <= LOWER_BOUND/2 || UPPER_BOUND/2 <= gapExt) {
return 1;
}
}
for (int r = 0; r < alphabetLength; r++)
for (int c = 0; c < alphabetLength; c++) {
int score = scoreMatrix[r * alphabetLength + c];
if (score < LOWER_BOUND || UPPER_BOUND < score) {
return 1;
}
if (!SIMD::satArthm) {
if (score <= LOWER_BOUND/2 || UPPER_BOUND/2 <= score)
return 1;
}
}
// TODO: If not saturated arithmetic check if inital values of H (-gapOpen - i * gapExt) cause overflow
// ------------------------------------------------------------------ //
// ------------------------ INITIALIZATION -------------------------- //
const __mxxxi ZERO_SIMD = SIMD::set1(0);
const __mxxxi LOWER_BOUND_SIMD = SIMD::set1(LOWER_BOUND);
const __mxxxi LOWER_SCORE_BOUND_SIMD = SIMD::set1(LOWER_SCORE_BOUND);
int nextDbSeqIdx = 0; // index in db
int currDbSeqsIdxs[SIMD::numSeqs]; // index in db
unsigned char* currDbSeqsPos[SIMD::numSeqs]; // current element for each current database sequence
int currDbSeqsLengths[SIMD::numSeqs];
bool justLoaded[SIMD::numSeqs] = {0}; // True if sequence was just loaded into channel
bool seqJustLoaded = false; // True if at least one sequence was just loaded into channel
int shortestDbSeqLength = -1; // length of shortest sequence among current database sequences
int numEndedDbSeqs = 0; // Number of sequences that ended
// Row index of best score for each current database sequence. Used for HW and OV.
int currDbSeqsBestScoreColumn[SIMD::numSeqs];
// Load initial sequences
for (int i = 0; i < SIMD::numSeqs; i++)
if (loadNextSequence(nextDbSeqIdx, dbLength, currDbSeqsIdxs[i], currDbSeqsPos[i],
currDbSeqsLengths[i], db, dbSeqLengths, calculated, numEndedDbSeqs)) {
justLoaded[i] = seqJustLoaded = true;
// Update shortest sequence length if new sequence was loaded
if (shortestDbSeqLength == -1 || currDbSeqsLengths[i] < shortestDbSeqLength)
shortestDbSeqLength = currDbSeqsLengths[i];
}
// Q is gap open penalty, R is gap ext penalty.
const __mxxxi Q = SIMD::set1(gapOpen);
const __mxxxi R = SIMD::set1(gapExt);
// Previous H column (array), previous E column (array), previous F, all signed short
__mxxxi prevHs[queryLength];
__mxxxi prevEs[queryLength];
// Initialize all values
for (int r = 0; r < queryLength; r++) {
if (MODE == OPAL_MODE_OV)
prevHs[r] = ZERO_SIMD;
else { // - Q - r * R
if (r == 0)
prevHs[0] = SIMD::sub(ZERO_SIMD, Q);
else
prevHs[r] = SIMD::sub(prevHs[r-1], R);
}
prevEs[r] = LOWER_SCORE_BOUND_SIMD;
}
// u - up, ul - up left
__mxxxi uH, ulH;
if (MODE == OPAL_MODE_NW) {
ulH = ZERO_SIMD;
uH = SIMD::sub(R, Q); // -Q + R
}
__mxxxi maxLastRowH = LOWER_BOUND_SIMD; // Keeps track of maximum H in last row
// ------------------------------------------------------------------ //
int columnsSinceLastSeqEnd = 0;
// For each column
while (numEndedDbSeqs < dbLength) {
// -------------------- CALCULATE QUERY PROFILE ------------------------- //
// TODO: Rognes uses pshufb here, I don't know how/why?
__mxxxi P[alphabetLength];
typename SIMD::type profileRow[SIMD::numSeqs] __attribute__((aligned(SIMD_REG_SIZE / 8)));
for (unsigned char letter = 0; letter < alphabetLength; letter++) {
int* scoreMatrixRow = scoreMatrix + letter*alphabetLength;
for (int i = 0; i < SIMD::numSeqs; i++) {
unsigned char* dbSeqPos = currDbSeqsPos[i];
if (dbSeqPos != 0)
profileRow[i] = (typename SIMD::type)scoreMatrixRow[*dbSeqPos];
}
P[letter] = _mmxxx_load_si((__mxxxi const*)profileRow);
}
// ---------------------------------------------------------------------- //
// u - up
__mxxxi uF = LOWER_SCORE_BOUND_SIMD;
// Database sequence has fixed start and end only in NW
if (MODE == OPAL_MODE_NW) {
if (seqJustLoaded) {
typename SIMD::type resetMask[SIMD::numSeqs] __attribute__((aligned(SIMD_REG_SIZE / 8)));
for (int i = 0; i < SIMD::numSeqs; i++)
resetMask[i] = justLoaded[i] ? 0 : -1;
const __mxxxi resetMaskPacked = _mmxxx_load_si((__mxxxi const*)resetMask);
ulH = _mmxxx_and_si(uH, resetMaskPacked);
} else {
ulH = uH;
}
uH = SIMD::sub(uH, R); // uH is -Q - c*R
// NOTE: Setup of ulH and uH for first column is done when sequence is loaded.
} else {
uH = ulH = ZERO_SIMD;
}
__mxxxi minE, minF;
minE = minF = SIMD::set1(UPPER_BOUND);
__mxxxi maxH = LOWER_BOUND_SIMD; // Max H in this column
__mxxxi H;
__mxxxi firstRow_uH, firstRow_ulH; // Values of uH and ulH from first row of column
if (MODE == OPAL_MODE_NW) {
firstRow_uH = uH;
firstRow_ulH = ulH;
}
__mxxxi prevMaxLastRowH = maxLastRowH;
// ----------------------- CORE LOOP (ONE COLUMN) ----------------------- //
for (int r = 0; r < queryLength; r++) { // For each cell in column
// Calculate E = max(lH-Q, lE-R)
__mxxxi E = SIMD::max(SIMD::sub(prevHs[r], Q), SIMD::sub(prevEs[r], R)); // E could overflow
// Calculate F = max(uH-Q, uF-R)
__mxxxi F = SIMD::max(SIMD::sub(uH, Q), SIMD::sub(uF, R)); // F could overflow
minF = SIMD::min(minF, F); // For overflow detection
// Calculate H
H = SIMD::max(F, E);
__mxxxi ulH_P = SIMD::add(ulH, P[query[r]]);
H = SIMD::max(H, ulH_P); // H could overflow
maxH = SIMD::max(maxH, H); // update best score in column
// Set uF, uH, ulH
uF = F;
uH = H;
ulH = prevHs[r];
// Update prevHs, prevEs in advance for next column
prevEs[r] = E;
prevHs[r] = H;
}
// ---------------------------------------------------------------------- //
maxLastRowH = SIMD::max(maxLastRowH, H);
if (MODE == OPAL_MODE_NW) {
uH = firstRow_uH;
ulH = firstRow_ulH;
}
// Find minE, which should be checked with minE == LOWER_BOUND for overflow
for (int r = 0; r < queryLength; r++)
minE = SIMD::min(minE, prevEs[r]);
columnsSinceLastSeqEnd++;
typename SIMD::type unpackedMaxH[SIMD::numSeqs] __attribute__((aligned(SIMD_REG_SIZE / 8)));
_mmxxx_store_si((__mxxxi*)unpackedMaxH, maxH);
// ------------------------ OVERFLOW DETECTION -------------------------- //
bool overflowDetected = false; // True if overflow was detected for this column.
bool overflowed[SIMD::numSeqs];
if (!SIMD::satArthm) {
/* // This check is based on following assumptions:
// - overflow wraps
// - Q, R and all scores from scoreMatrix are between LOWER_BOUND/2 and UPPER_BOUND/2 exclusive
typename SIMD::type* unpackedOfTest = (typename SIMD::type *)&ofTest;
for (int i = 0; i < SIMD::numSeqs; i++)
if (currDbSeqsPos[i] != 0 && unpackedOfTest[i] <= LOWER_BOUND/2)
return 1;*/
} else {
// There is overflow if minE == LOWER_BOUND or minF == LOWER_BOUND or maxH == UPPER_BOUND
__mxxxi minEF = SIMD::min(minE, minF);
typename SIMD::type unpackedMinEF[SIMD::numSeqs] __attribute__((aligned(SIMD_REG_SIZE / 8)));
_mmxxx_store_si((__mxxxi*)unpackedMinEF, minEF);
for (int i = 0; i < SIMD::numSeqs; i++) {
overflowed[i] = currDbSeqsPos[i] != 0 && (unpackedMinEF[i] == LOWER_BOUND
|| unpackedMaxH[i] == UPPER_BOUND);
if (overflowMethod == OPAL_OVERFLOW_BUCKETS && overflowed[i]) {
// In buckets method, we stop calculation when overflow is detected.
return OPAL_ERR_OVERFLOW;
}
}
}
for (int i = 0; i < SIMD::numSeqs; i++) {
overflowDetected = overflowDetected || overflowed[i];
}
overflowOccured = overflowOccured || overflowDetected;
// ---------------------------------------------------------------------- //
// ------------------ Store end location of best score ------------------ //
if (searchType != OPAL_SEARCH_SCORE && (MODE == OPAL_MODE_HW || MODE == OPAL_MODE_OV)) {
// Determine the column of best score.
__mxxxi greater = SIMD::cmpgt(maxLastRowH, prevMaxLastRowH);
typename SIMD::type unpackedGreater[SIMD::numSeqs] __attribute__((aligned(SIMD_REG_SIZE / 8)));
_mmxxx_store_si((__mxxxi*)unpackedGreater, greater);
for (int i = 0; i < SIMD::numSeqs; i++) {
if (currDbSeqsPos[i] != 0 && !overflowed[i]) { // If not null sequence or overflowed
if (unpackedGreater[i] != 0) {
currDbSeqsBestScoreColumn[i] = dbSeqLengths[currDbSeqsIdxs[i]] - currDbSeqsLengths[i]
+ columnsSinceLastSeqEnd - 1;
}
}
}
}
// ---------------------------------------------------------------------- //
seqJustLoaded = false;
// --------------------- CHECK AND HANDLE SEQUENCE END ------------------ //
if (overflowDetected || shortestDbSeqLength == columnsSinceLastSeqEnd) { // If at least one sequence ended
shortestDbSeqLength = -1;
// Calculate best scores
__mxxxi bestScore;
if (MODE == OPAL_MODE_OV)
bestScore = SIMD::max(maxH, maxLastRowH); // Maximum of last row and column
if (MODE == OPAL_MODE_HW)
bestScore = maxLastRowH;
if (MODE == OPAL_MODE_NW)
bestScore = H;
typename SIMD::type unpackedBestScore[SIMD::numSeqs] __attribute__((aligned(SIMD_REG_SIZE / 8)));
_mmxxx_store_si((__mxxxi*)unpackedBestScore, bestScore);
for (int i = 0; i < SIMD::numSeqs; i++) {
if (currDbSeqsPos[i] != 0) { // If not null sequence
justLoaded[i] = false;
currDbSeqsLengths[i] -= columnsSinceLastSeqEnd;
if (overflowed[i] || currDbSeqsLengths[i] == 0) { // If sequence ended
numEndedDbSeqs++;
if (!overflowed[i]) {
// Store result.
int dbSeqIdx = currDbSeqsIdxs[i];
OpalSearchResult *result = results[dbSeqIdx];
calculated[dbSeqIdx] = true;
// Set score.
opalSearchResultSetScore(result, unpackedBestScore[i]);
// Set end location.
if (searchType == OPAL_SEARCH_SCORE) {
result->endLocationQuery = -1;
result->endLocationTarget = -1;
} else {
if (MODE == OPAL_MODE_NW) {
result->endLocationQuery = queryLength - 1;
result->endLocationTarget = dbSeqLengths[dbSeqIdx] - 1;
}
if (MODE == OPAL_MODE_HW) {
result->endLocationQuery = queryLength - 1;
result->endLocationTarget = currDbSeqsBestScoreColumn[i];
}
if (MODE == OPAL_MODE_OV) {
// This unpacking will repeat unnecessarily if there are multiple sequences
// ending at the same time, however that will happen in very rare occasions.
// TODO(martin): always unpack only once.
typename SIMD::type unpackedPrevMaxLastRowH[SIMD::numSeqs] __attribute__((aligned(SIMD_REG_SIZE / 8)));
_mmxxx_store_si((__mxxxi*)unpackedPrevMaxLastRowH, prevMaxLastRowH);
typename SIMD::type maxScore = unpackedPrevMaxLastRowH[i];
// If last column contains best score, determine row.
if (unpackedMaxH[i] > maxScore) {
result->endLocationTarget = dbSeqLengths[dbSeqIdx] - 1;
for (int r = 0; r < queryLength; r++) {
typename SIMD::type unpackedPrevH[SIMD::numSeqs] __attribute__((aligned(SIMD_REG_SIZE / 8)));
_mmxxx_store_si((__mxxxi*)unpackedPrevH, prevHs[r]);
if (unpackedPrevH[i] > maxScore) {
result->endLocationQuery = r;
maxScore = unpackedPrevH[i];
}
}
} else {
result->endLocationTarget = currDbSeqsBestScoreColumn[i];
result->endLocationQuery = queryLength - 1;
}
}
}
}
// Load next sequence
if (loadNextSequence(nextDbSeqIdx, dbLength, currDbSeqsIdxs[i], currDbSeqsPos[i],
currDbSeqsLengths[i], db, dbSeqLengths, calculated, numEndedDbSeqs)) {
justLoaded[i] = seqJustLoaded = true;
}
} else {
if (currDbSeqsPos[i] != 0)
currDbSeqsPos[i]++; // If not new and not null, move for one element
}
// Update shortest sequence length if sequence is not null
if (currDbSeqsPos[i] != 0 && (shortestDbSeqLength == -1 || currDbSeqsLengths[i] < shortestDbSeqLength))
shortestDbSeqLength = currDbSeqsLengths[i];
}
}
//------------ Reset prevEs, prevHs, maxLastRowH(, ulH and uH) ------------//
typename SIMD::type resetMask[SIMD::numSeqs] __attribute__((aligned(SIMD_REG_SIZE / 8)));
typename SIMD::type setMask[SIMD::numSeqs] __attribute__((aligned(SIMD_REG_SIZE / 8))); // inverse of resetMask
for (int i = 0; i < SIMD::numSeqs; i++) {
resetMask[i] = justLoaded[i] ? 0 : -1;
setMask[i] = justLoaded[i] ? -1 : 0;
}
const __mxxxi resetMaskPacked = _mmxxx_load_si((__mxxxi const*)resetMask);
const __mxxxi setMaskPacked = _mmxxx_load_si((__mxxxi const*)setMask);
// Set prevEs ended channels to LOWER_SCORE_BOUND
const __mxxxi maskedLowerScoreBoundSimd = _mmxxx_and_si(setMaskPacked, LOWER_SCORE_BOUND_SIMD);
for (int r = 0; r < queryLength; r++) {
prevEs[r] = _mmxxx_and_si(prevEs[r], resetMaskPacked);
prevEs[r] = SIMD::add(prevEs[r], maskedLowerScoreBoundSimd);
}
// Set prevHs
for (int r = 0; r < queryLength; r++) {
prevHs[r] = _mmxxx_and_si(prevHs[r], resetMaskPacked);
if (MODE != OPAL_MODE_OV) {
if (r == 0) {
prevHs[0] = SIMD::sub(prevHs[0], _mmxxx_and_si(setMaskPacked, Q));
} else {
prevHs[r] = SIMD::add(prevHs[r], _mmxxx_and_si(setMaskPacked, SIMD::sub(prevHs[r-1], R)));
}
}
}
// Set ulH and uH if NW
if (MODE == OPAL_MODE_NW) {
ulH = _mmxxx_and_si(ulH, resetMaskPacked); // to 0
// Set uH channels to -Q + R
uH = _mmxxx_and_si(uH, resetMaskPacked);
uH = SIMD::add(uH, _mmxxx_and_si(setMaskPacked, SIMD::sub(R, Q)));
}
// Set maxLastRow ended channels to LOWER_BOUND
maxLastRowH = _mmxxx_and_si(maxLastRowH, resetMaskPacked);
maxLastRowH = SIMD::add(maxLastRowH, _mmxxx_and_si(setMaskPacked, LOWER_BOUND_SIMD));
//-------------------------------------------------------//
columnsSinceLastSeqEnd = 0;
} else { // If no sequences ended
// Move for one element in all sequences
for (int i = 0; i < SIMD::numSeqs; i++)
if (currDbSeqsPos[i] != 0)
currDbSeqsPos[i]++;
}
// ---------------------------------------------------------------------- //
}
if (overflowOccured) {
return OPAL_ERR_OVERFLOW;
}
return 0;
}
/**
* @param [in] skip If skip[i] is true, result for sequence #i will not be calculated.
* If skip is NULL, all results will be calculated.
*/
template <int MODE>
static int searchDatabase(unsigned char query[], int queryLength,
unsigned char** db, int dbLength, int dbSeqLengths[],
int gapOpen, int gapExt, int* scoreMatrix, int alphabetLength,
OpalSearchResult* results[], const int searchType, bool skip[], int overflowMethod) {
int resultCode = 0;
// Do buckets only if using buckets overflow method.
const int chunkSize = overflowMethod == OPAL_OVERFLOW_BUCKETS ? 1024 : dbLength;
bool* calculated = new bool[chunkSize];
for (int startIdx = 0; startIdx < dbLength; startIdx += chunkSize) {
unsigned char** db_ = db + startIdx;
int* dbSeqLengths_ = dbSeqLengths + startIdx;
OpalSearchResult** results_ = results + startIdx;
int dbLength_ = startIdx + chunkSize >= dbLength ? dbLength - startIdx : chunkSize;
for (int i = 0; i < dbLength_; i++) {
calculated[i] = skip ? skip[i] : false;
}
resultCode = searchDatabase_< Simd<char>, MODE >
(query, queryLength, db_, dbLength_, dbSeqLengths_,
gapOpen, gapExt, scoreMatrix, alphabetLength, results_,
searchType, calculated, overflowMethod);
if (resultCode == OPAL_ERR_OVERFLOW) {
resultCode = searchDatabase_< Simd<short>, MODE >
(query, queryLength, db_, dbLength_, dbSeqLengths_,
gapOpen, gapExt, scoreMatrix, alphabetLength, results_,
searchType, calculated, overflowMethod);
if (resultCode == OPAL_ERR_OVERFLOW) {
resultCode = searchDatabase_< Simd<int>, MODE >
(query, queryLength, db_, dbLength_, dbSeqLengths_,
gapOpen, gapExt, scoreMatrix, alphabetLength, results_,
searchType, calculated, overflowMethod);
if (resultCode != 0)
break; // TODO: this does not make much sense because of buckets, improve it.
}
}
}
delete[] calculated;
return resultCode;
}
/**
* @return Zero-based index of max element in array. If there are multiple elements with
* same value, last is returned.
*/
template <typename T>
static inline T arrayMax(T array[], int length) {
assert(length > 0);
int maxElementIdx = 0;
for (int i = 1; i < length; i++) {
if (array[i] > array[maxElementIdx]) {
maxElementIdx = i;
}
}
return array[maxElementIdx];
}
/**
* @param length Length of gap, must be non-negative.
* @param gapOpen Penalty for gap opening (non-negative).
* @param gapExt Penalty for gap extension (non-negative).
* @return Gap penalty, as non-negative number.
*/
static int gapPenalty(int length, int gapOpen, int gapExt) {
if (length > 0) {
return gapOpen + gapExt * (length - 1);
} else {
return 0;
}
}
/**
* Calculates bottom border of band for OV mode stop conditions.
*/
static int calculateBottomBandBorderOV(int k, int Q, int T, int Go, int Ge, int M) {
int border = 0;
// for d <= Q - T:
border = std::max(border, std::min(Q - T, -1 * (k + Go - Ge - M * T) / Ge));
// for d > Q - T:
int borderCandidate = -1 * (k - M * Q + Go - Ge) / (Ge + M);
if (borderCandidate > Q - T) {
border = std::max(border, borderCandidate);
}
return std::min(border, Q - 1);
}
static int calculateTopBandBorderHW(int k, int Q, int T, int Go, int Ge, int M) {
int border = 0;
// for d <= T - Q;
border = std::max(border, std::min(T - Q, -1 * (k - M * Q + Go) / Ge + 1));
// for d > T - Q:
int borderCandidate = -1 * (k - T * M + 2 * Go + Ge * (Q - T - 2)) / (2 * Ge + M);
if (borderCandidate > T - Q) {
border = std::max(border, borderCandidate);
}
return std::min(border, T - 1);
}
static int calculateBottomBandBorderHW(int k, int Q, int T, int Go, int Ge, int M) {
int border = 0;
// for d >= Q - T:
int borderCandidate = -1 * (k + Go - Ge - Q * M) / (Ge + M);
if (borderCandidate >= Q - T) {
border = std::max(border, borderCandidate);
}
// for d < Q - T:
if (-2 * Go - Ge * (Q - T - 2) + M * T >= k) {
border = std::max(border, Q - T - 1);
}
return std::min(border, Q - 1);
}
static int calculateBottomBandBorderNW(int k, int Q, int T, int Go, int Ge, int M) {
int border = 0;
// for d > Q - T:
int borderCandidate = -1 * (k + 2 * Go - M * Q + Ge * (T - Q - 2)) / (2 * Ge + M);
if (borderCandidate > Q - T) {
border = std::max(border, borderCandidate);
}
// for d = Q - T:
if (Q - T <= -1 * (k + Go - M * T - Ge) / Ge) {
border = std::max(border, Q - T);
}
// for d < Q - T:
if (-2 * Go - Ge * (Q - T - 2) + M * T >= k) {
border = std::max(border, Q - T - 1);
}
return std::min(border, Q - 1);
}
/**
* Calculates top and bottom diagonal of band that contains all cells that could be part of any
* solution that gives score not smaller than k. This means that if we are interested only in solutions
* that give score that is not smaller than k, it is enough to calculate only cells inside that band.
* Always starts from top left corner (like NW does) no matter which mode is specified,
* and stops with regard to stop conditions of specified mode.
* @param k We are interested only in scores thar are not smaller than k.
* @param mode Alignment mode, it is used for stop conditions.
* @param Q queryLength
* @param T targetLength
* @param Go gapOpen -> non negative penalty for opening of gap.
* @param Ge gapExt -> non negative penalty for extension of gap.
* @param M Max score from score matrix.
* @return Pair where first is index of bottom diagonal(border), and second is index of top diagonal(border).
* Therefore, first value will be in [0, Q - 1], while second will be in [0, T - 1].
* Band spans between top and bottom diagonal, including them.
* Main diagonal has index 0, diagonals above it and below both start with index 1.
* If there is no band, (-1, -1) is returned.
*
* Example of matrix where Q is 3 and T is 6, each cell is marked with index of diagonal it lies on:
*
* 012345 xxx---
* 101234 , if bottom border is 1 and top is 2, we have band: xxxx--
* 210123 -xxxx-
*/
static std::pair<int, int> calculateBandBorders(int k, int mode, int Q, int T, int Go, int Ge, int M) {
if (mode == OPAL_MODE_OV || mode == OPAL_MODE_SW) {
// Bands for OV and SW have same conditions, so they are calculated in same way.
if (M * std::min(Q, T) >= k) { // Determine if band exists at all.
// Conditions for top and bottom band are symmetric, so logic for bottom is reused for top.
return std::make_pair(calculateBottomBandBorderOV(k, Q, T, Go, Ge, M),
calculateBottomBandBorderOV(k, T, Q, Go, Ge, M));
} else {
return std::make_pair(-1, -1);
}
} else if (mode == OPAL_MODE_HW) {
if (M * std::min(Q, T) - gapPenalty(Q - std::min(Q, T), Go, Ge) >= k) {
return std::make_pair(calculateBottomBandBorderHW(k, Q, T, Go, Ge, M),
calculateTopBandBorderHW(k, Q, T, Go, Ge, M));
} else {
return std::make_pair(-1, -1);
}
} else if (mode == OPAL_MODE_NW) {
if (M * std::min(Q, T) - gapPenalty(std::abs(Q - T), Go, Ge) >= k) {
// Conditions for top and bottom band are symmetric, so logic for bottom is reused for top.
return std::make_pair(calculateBottomBandBorderNW(k, Q, T, Go, Ge, M),
calculateBottomBandBorderNW(k, T, Q, Go, Ge, M));
} else {
return std::make_pair(-1, -1);
}
} else {
assert(false); // Invalid alignment mode.
}
}
/**
* Returns new sequence that is reverse of given sequence.
*/
static inline unsigned char* createReverseCopy(const unsigned char* seq, int length) {
unsigned char* rSeq = (unsigned char*) malloc(length * sizeof(unsigned char));
for (int i = 0; i < length; i++) {
rSeq[i] = seq[length - i - 1];
}
return rSeq;
}
template <class T>
static inline void revertArray(T array[], int length) {
for (int i = 0; i < length / 2; i++) {
T tmp = array[i];
array[i] = array[length - 1 - i];
array[length - 1 - i] = tmp;
}
}
// Here I store scores for one cell in score matrix.
class Cell {
public:
int H, E, F;
enum class Field {
H, E, F
};
};
/**
* Finds alignment of two sequences, if we know scoreLimit.
* First alignment that has score greater or equal then scoreLimit will be returned.
* If there is no such alignment, behavior will be unexpected.
* Always starts from top left corner (like NW does) no matter which mode is specified,
* and stops with regard to stop conditions of specified mode.
* For example, for HW it will stop on last row, and for SW it will stop anywhere.
* Returns score, start location (which is always (0, 0)), end location and alignment.
* @param [in] query
* @param [in] queryLength
* @param [in] target
* @param [in] targetLength
* @param [in] gapOpen
* @param [in] gapExt
* @param [in] scoreMatrix
* @param [in] alphabetLength
* @param [in] scoreLimit First alignment with score greater/equal than scoreLimit is returned.
* If there is no such score, behavior is undefined.
* TODO(martin): make this function also work when max score is smaller then scoreLimit.
* @param [out] result Pointer to already allocated object is expected here.
* Score, start location, end location and alignment will be set.
* Do not forget to free() alignment!
* @param [in] mode Mode whose stop conditions will be used when finding alignment.
*/
static void findAlignment(
const unsigned char query[], const int queryLength, const unsigned char target[], const int targetLength,
const int gapOpen, const int gapExt, const int* scoreMatrix, const int alphabetLength,
const int scoreLimit, OpalSearchResult* result, const int mode) {
/*
printf("Query: ");
for (int i = 0; i < queryLength; i++) {
printf("%d ", query[i]);
}
printf("\n");
printf("Target: ");
for (int i = 0; i < targetLength; i++) {
printf("%d ", target[i]);
}
printf("\n");
*/
//printf("lengths: %d %d\n", queryLength, targetLength);
std::pair<int, int> bandBorders = calculateBandBorders(
scoreLimit, mode, queryLength, targetLength, gapOpen, gapExt,
arrayMax(scoreMatrix, alphabetLength * alphabetLength));
assert(bandBorders.first >= 0 && bandBorders.first < queryLength);
assert(bandBorders.second >= 0 && bandBorders.second < targetLength);
//printf("band: %d %d\n", bandBorders.first, bandBorders.second);
Cell** matrix = new Cell*[targetLength]; // NOTE: First index is column, second is row.
Cell* initialColumn = new Cell[queryLength];
const int LOWER_SCORE_BOUND = INT_MIN + std::max(gapOpen, gapExt);
for (int r = 0; r < queryLength; r++) {
initialColumn[r].H = -1 * gapOpen - r * gapExt;
initialColumn[r].E = LOWER_SCORE_BOUND;
}
Cell* prevColumn = initialColumn;
int maxScore = INT_MIN; // Max score so far, but only among cells that could be final.
int H = INT_MIN; // Current score.
int c;
for (c = 0; c < targetLength && maxScore < scoreLimit; c++) {
matrix[c] = new Cell[queryLength];
// First and last row in band for this column.
int rBandStart = std::max(0, c - bandBorders.second);
int rBandEnd = std::min(queryLength - 1, c + bandBorders.first);
int uF, uH, ulH;
if (rBandStart == 0) {
uF = LOWER_SCORE_BOUND;
uH = -1 * gapOpen - c * gapExt;
ulH = c == 0 ? 0 : uH + gapExt;
} else {
uH = uF = LOWER_SCORE_BOUND; // Out of band, so set to -inf.
ulH = prevColumn[rBandStart - 1].H;
}
for (int r = rBandStart; r <= rBandEnd; r++) {
int E = std::max(prevColumn[r].H - gapOpen, prevColumn[r].E - gapExt);
int F = std::max(uH - gapOpen, uF - gapExt);
int score = scoreMatrix[query[r] * alphabetLength + target[c]];
H = std::max(E, std::max(F, ulH + score));
/*
printf("E: %d ", E);
printf("F: %d ", F);
printf("score: %d ", score);
printf("ulH: %d ", ulH);
printf("H: %d ", H);
*/
// If mode is SW, track max score of all cells.
// If mode is OV, track max score in last column.
if (mode == OPAL_MODE_SW
|| (mode == OPAL_MODE_OV && c == targetLength - 1)) {
maxScore = std::max(maxScore, H);
}
uF = F;
uH = H;
ulH = prevColumn[r].H;
matrix[c][r].H = H;
matrix[c][r].E = E;
matrix[c][r].F = F;
}
// Set all cells that are out of band to -inf.
for (int r = 0; r < rBandStart; r++) {
matrix[c][r].E = matrix[c][r].H = matrix[c][r].F = LOWER_SCORE_BOUND;
}
for (int r = rBandEnd + 1; r < queryLength; r++) {
matrix[c][r].E = matrix[c][r].H = matrix[c][r].F = LOWER_SCORE_BOUND;
}
if (mode == OPAL_MODE_HW || mode == OPAL_MODE_OV) {
maxScore = std::max(maxScore, H); // Track max score in last row.
}
prevColumn = matrix[c];
}
int lastColumnIdx = c - 1;
result->startLocationTarget = 0;
result->startLocationQuery = 0;
result->scoreSet = 1;
// Determine score and end location of alignment.
switch (mode) {
case OPAL_MODE_NW:
opalSearchResultSetScore(result, H);
result->endLocationTarget = targetLength - 1;
result->endLocationQuery = queryLength - 1;
break;
case OPAL_MODE_HW:
opalSearchResultSetScore(result, maxScore);
result->endLocationTarget = lastColumnIdx;
result->endLocationQuery = queryLength - 1;
break;
case OPAL_MODE_SW: case OPAL_MODE_OV:
opalSearchResultSetScore(result, maxScore);
result->endLocationTarget = lastColumnIdx;
int r;
for (r = 0; r < queryLength && matrix[lastColumnIdx][r].H != maxScore; r++);
assert(r < queryLength);
assert(matrix[lastColumnIdx][r].H == maxScore);
result->endLocationQuery = r;
break;
default:
assert(false);
}
// Construct alignment.
// I reserve max size possibly needed for alignment.
unsigned char* alignment = (unsigned char*) malloc(
sizeof(unsigned char) * (result->endLocationQuery + result->endLocationTarget));
int alignmentLength = 0;
int rIdx = result->endLocationQuery;
int cIdx = result->endLocationTarget;
Cell::Field field = Cell::Field::H; // Current field type.
while (rIdx >= 0 && cIdx >= 0) {
Cell cell = matrix[cIdx][rIdx]; // Current cell.
// Determine to which cell and which field we should go next, move, and add operation to alignment.
switch (field) {
case Cell::Field::H:
if (cell.H == cell.E) {
field = Cell::Field::E;
} else if (cell.H == cell.F) {
field = Cell::Field::F;
} else {
alignment[alignmentLength++] = (query[rIdx] == target[cIdx] ? OPAL_ALIGN_MATCH
: OPAL_ALIGN_MISMATCH);
cIdx--; rIdx--;
}
break;
case Cell::Field::E:
field = (cell.E == matrix[cIdx - 1][rIdx].H - gapOpen) ? Cell::Field::H : Cell::Field::E;
alignment[alignmentLength++] = OPAL_ALIGN_INS;
cIdx--;
break;
case Cell::Field::F:
field = (cell.F == matrix[cIdx][rIdx - 1].H - gapOpen) ? Cell::Field::H : Cell::Field::F;
alignment[alignmentLength++] = OPAL_ALIGN_DEL;
rIdx--;
break;
}
}
// I stop when matrix border is reached, so I have to add indels at start of alignment
// manually (they do not have entry in operations). Only one of these two loops will trigger.
while (rIdx >= 0) {
alignment[alignmentLength] = OPAL_ALIGN_DEL;
alignmentLength++; rIdx--;
}
while (cIdx >= 0) {
alignment[alignmentLength] = OPAL_ALIGN_INS;
alignmentLength++; cIdx--;
}
//printf("rIdx: %d, cIdx: %d\n", rIdx, cIdx);
assert(rIdx == -1 && cIdx == -1);
alignment = (unsigned char*) realloc(alignment, sizeof(unsigned char) * alignmentLength);
revertArray(alignment, alignmentLength);
// Store alignment to result.
result->alignment = alignment;
result->alignmentLength = alignmentLength;
/*
printf("Alignment: ");
for (int j = 0; j < result->alignmentLength; j++)
printf("%d ", result->alignment[j]);
printf("\n");
*/
// Cleanup
delete[] initialColumn;
for (int i = 0; i <= lastColumnIdx; i++) {
delete[] matrix[i];
}
delete[] matrix;
}
extern int opalSearchDatabase(
unsigned char query[], int queryLength,
unsigned char** db, int dbLength, int dbSeqLengths[],
int gapOpen, int gapExt, int* scoreMatrix, int alphabetLength,
OpalSearchResult* results[], const int searchType, int mode, int overflowMethod) {
#if !defined(__SSE4_1__) && !defined(__AVX2__)
return OPAL_ERR_NO_SIMD_SUPPORT;
#else
// Calculate score and end location.
int status;
// Skip recalculation of already calculated sequences.
bool *skip = new bool[dbLength];
for (int i = 0; i < dbLength; i++) {
skip[i] = (!opalSearchResultIsEmpty(*results[i])
&& (searchType == OPAL_SEARCH_SCORE
|| (results[i]->endLocationQuery >= 0 && results[i]->endLocationTarget >= 0)));
}
if (mode == OPAL_MODE_NW) {
status = searchDatabase<OPAL_MODE_NW>(
query, queryLength, db, dbLength, dbSeqLengths, gapOpen, gapExt,
scoreMatrix, alphabetLength, results, searchType, skip, overflowMethod);
} else if (mode == OPAL_MODE_HW) {
status = searchDatabase<OPAL_MODE_HW>(
query, queryLength, db, dbLength, dbSeqLengths, gapOpen, gapExt,
scoreMatrix, alphabetLength, results, searchType, skip, overflowMethod);
} else if (mode == OPAL_MODE_OV) {
status = searchDatabase<OPAL_MODE_OV>(
query, queryLength, db, dbLength, dbSeqLengths, gapOpen, gapExt,
scoreMatrix, alphabetLength, results, searchType, skip, overflowMethod);
} else if (mode == OPAL_MODE_SW) {
status = searchDatabaseSW(
query, queryLength, db, dbLength, dbSeqLengths,
gapOpen, gapExt, scoreMatrix, alphabetLength,
results, searchType, skip, overflowMethod);
} else {
status = OPAL_ERR_INVALID_MODE;
}
delete[] skip;
if (status) return status;
if (searchType == OPAL_SEARCH_ALIGNMENT) {
// Calculate alignment of query with each database sequence.
unsigned char* const rQuery = createReverseCopy(query, queryLength);
for (int i = 0; i < dbLength; i++) {
if (mode == OPAL_MODE_SW && results[i]->score == 0) { // If it does not have alignment
results[i]->alignment = NULL;
results[i]->alignmentLength = 0;
results[i]->startLocationQuery = results[i]->startLocationTarget = -1;
results[i]->endLocationQuery = results[i]->endLocationTarget = -1;
} else {
//printf("%d %d\n", results[i]->endLocationQuery, results[i]->endLocationTarget);
// Do alignment in reverse direction.
int alignQueryLength = results[i]->endLocationQuery + 1;
unsigned char* alignQuery = rQuery + queryLength - alignQueryLength;
int alignTargetLength = results[i]->endLocationTarget + 1;
unsigned char* alignTarget = createReverseCopy(db[i], alignTargetLength);
OpalSearchResult result;
findAlignment(
alignQuery, alignQueryLength, alignTarget, alignTargetLength,
gapOpen, gapExt, scoreMatrix, alphabetLength,
results[i]->score, &result, mode);
//printf("%d %d\n", results[i]->score, result.score);
assert(results[i]->score == result.score);
// Translate results.
results[i]->startLocationQuery = alignQueryLength - result.endLocationQuery - 1;
results[i]->startLocationTarget = alignTargetLength - result.endLocationTarget - 1;
results[i]->alignmentLength = result.alignmentLength;
results[i]->alignment = result.alignment;
revertArray(results[i]->alignment, results[i]->alignmentLength);
free(alignTarget);
}
}
free(rQuery);
} else {
for (int i = 0; i < dbLength; i++) {
results[i]->alignment = NULL;
results[i]->alignmentLength = -1;
results[i]->startLocationQuery = -1;
results[i]->startLocationTarget = -1;
}
}
return 0;
#endif
}
extern int opalSearchDatabaseCharSW(
unsigned char query[], int queryLength, unsigned char** db, int dbLength,
int dbSeqLengths[], int gapOpen, int gapExt, int* scoreMatrix,
int alphabetLength, OpalSearchResult* results[]) {
#if !defined(__SSE4_1__) && !defined(__AVX2__)
return OPAL_ERR_NO_SIMD_SUPPORT;
#else
bool* calculated = new bool[dbLength];
for (int i = 0; i < dbLength; i++) {
calculated[i] = false;
}
int resultCode = searchDatabaseSW_< SimdSW<char> >(
query, queryLength, db, dbLength, dbSeqLengths, gapOpen, gapExt,
scoreMatrix, alphabetLength, results, OPAL_SEARCH_SCORE, calculated,
OPAL_OVERFLOW_SIMPLE);
for (int i = 0; i < dbLength; i++) {
if (!calculated[i]) {
results[i]->score = -1;
results[i]->scoreSet = 0;
}
}
delete[] calculated;
return resultCode;
#endif
}
extern void opalInitSearchResult(OpalSearchResult* result) {
result->scoreSet = 0;
result->startLocationTarget = result->startLocationQuery = -1;
result->endLocationTarget = result->endLocationQuery = -1;
result->alignment = NULL;
result->alignmentLength = 0;
}
extern int opalSearchResultIsEmpty(const OpalSearchResult result) {
return !result.scoreSet;
}
extern void opalSearchResultSetScore(OpalSearchResult* result, int score) {
result->scoreSet = 1;
result->score = score;
}
|