1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
|
#include "IncludeDefine.h"
#include "Parameters.h"
#include "Transcript.h"
#include "extendAlign.h"
#include "binarySearch2.h"
// #include "stitchGapIndel.cpp"
intScore stitchAlignToTranscript(uint rAend, uint gAend, uint rBstart, uint gBstart, uint L, uint iFragB, uint sjAB, Parameters& P, char* R, Genome &mapGen, Transcript *trA, const uint outFilterMismatchNmaxTotal) {
//stitch together A and B, extend in the gap, returns max score
if (trA->nExons>=MAX_N_EXONS)
return -1000010;
char *G=mapGen.G;
int Score=0;
if (sjAB!=((uint) -1) && trA->exons[trA->nExons-1][EX_sjA]==sjAB \
&& trA->exons[trA->nExons-1][EX_iFrag]==iFragB && rBstart==rAend+1 && gAend+1<gBstart ) {//simple stitching if junction belongs to a database
if (mapGen.sjdbMotif[sjAB]==0 && (L<=mapGen.sjdbShiftRight[sjAB] || trA->exons[trA->nExons-1][EX_L]<=mapGen.sjdbShiftLeft[sjAB]) ) {
return -1000006; //too large repeats around non-canonical junction
};
trA->exons[trA->nExons][EX_L] = L; //new exon length
trA->exons[trA->nExons][EX_R] = rBstart; //new exon r-start
trA->exons[trA->nExons][EX_G] = gBstart; //new exon g-start
trA->canonSJ[trA->nExons-1]=mapGen.sjdbMotif[sjAB]; //mark sj-db
trA->shiftSJ[trA->nExons-1][0]=mapGen.sjdbShiftLeft[sjAB];
trA->shiftSJ[trA->nExons-1][1]=mapGen.sjdbShiftRight[sjAB];
trA->sjAnnot[trA->nExons-1]=1;
trA->sjStr[trA->nExons-1]=mapGen.sjdbStrand[sjAB];;
trA->nExons++;
trA->nMatch+=L;
for (uint ii=rBstart;ii<rBstart+L;ii++) Score+=scoreMatch; //add QS for mapped portions
Score+=P.pGe.sjdbScore;
} else {//general stitching
trA->sjAnnot[trA->nExons-1]=0;
trA->sjStr[trA->nExons-1]=0;
if (trA->exons[trA->nExons-1][EX_iFrag]==iFragB) {//stitch aligns on the same fragment
uint gBend=gBstart+L-1;
uint rBend=rBstart+L-1;
// {//debug
// if (sjAB!=((uint) -1) && trA->exons[trA->nExons-1][EX_sjA]!=((uint) -1) && rBend<=rAend) {//
// Score -= rAend-rBstart+1;
// gAend -= rAend-rBstart+1;
// rAend = rBstart-1;
// trA->exons[trA->nExons-1][EX_L] =rAend-trA->exons[trA->nExons-1][EX_R]+1;
// };
// };
//check if r-overlapping fully and exit
if (rBend<=rAend) return -1000001;
if (gBend<=gAend && trA->exons[trA->nExons-1][EX_iFrag]==iFragB) return -1000002;
//shift the B 5' if overlaps A 3'
if (rBstart<=rAend) {
gBstart+=rAend-rBstart+1;
rBstart=rAend+1;
L=rBend-rBstart+1;
};
for (uint ii=rBstart;ii<=rBend;ii++) Score+=scoreMatch; //add QS for mapped portions
int gGap=gBstart-gAend-1; //could be < 0 for insertions
int rGap=rBstart-rAend-1;//>0 always since we removed overlap
uint nMatch=L;
uint nMM=0;
uint Del=0, Ins=0;
uint nIns=0, nDel=0;
int jR=0; //junction location in R-space
int jCan=999; //canonical junction type
uint gBstart1=gBstart-rGap-1;//the last base of the intron if all read gap belongs to acceptor, i.e. jR=0
// check all the different combinations of gGap and rGap
if ( gGap==0 && rGap==0 ) {//just joined the pieces, w/o stiching or gaps
//do nothing for now
} else if ( gGap>0 && rGap>0 && rGap==gGap ) {//no gaps, just try to fill space
//simple stitching, assuming no insertion in the read
for (int ii=1;ii<=rGap;ii++) {
if (G[gAend+ii]<4 && R[rAend+ii]<4) {//only score genome bases that are not Ns
if ( R[rAend+ii]==G[gAend+ii] ) {
Score+=scoreMatch;
nMatch++;
} else {
Score-=scoreMatch;
nMM++;
};
};
};
} else if ( gGap>rGap ) {//genomic gap (Deletion)
nDel=1;
Del=gGap-rGap; //gGap>0 here
if (Del>P.alignIntronMax && P.alignIntronMax>0) {
return -1000003; //large gaps not allowed
};
int Score1=0;
int jR1=1; //junction location in R-space
do { // 1. move left, until the score for MM is less than canonical advantage
jR1--;
if ( R[rAend+jR1]!=G[gBstart1+jR1] && G[gBstart1+jR1]<4 && R[rAend+jR1]==G[gAend+jR1]) Score1 -= scoreMatch;
} while ( Score1+P.scoreStitchSJshift >= 0 && int(trA->exons[trA->nExons-1][EX_L]) + jR1 > 1);//>=P.alignSJoverhangMin); //also check that we are still within the exon
int maxScore2=-999999;
Score1=0;
int jPen=0;
do { // 2. scan to the right to find the best junction locus
// ?TODO? if genome base is N, how to score?
if ( R[rAend+jR1]==G[gAend+jR1] && R[rAend+jR1]!=G[gBstart1+jR1] ) Score1+=scoreMatch;
if ( R[rAend+jR1]!=G[gAend+jR1] && R[rAend+jR1]==G[gBstart1+jR1] ) Score1-=scoreMatch;
int jCan1=-1; //this marks Deletion
int jPen1=0;
int Score2=Score1;
if (Del>=P.alignIntronMin) {//only check intron motif for large gaps= non-Dels
//check if the intron is canonical, or semi-canonical
if ( G[gAend+jR1+1]==2 && G[gAend+jR1+2]==3 && G[gBstart1+jR1-1]==0 && G[gBstart1+jR1]==2 ) {//GTAG
jCan1=1;
} else if ( G[gAend+jR1+1]==1 && G[gAend+jR1+2]==3 && G[gBstart1+jR1-1]==0 && G[gBstart1+jR1]==1 ) {//CTAC
jCan1=2;
} else if ( G[gAend+jR1+1]==2 && G[gAend+jR1+2]==1 && G[gBstart1+jR1-1]==0 && G[gBstart1+jR1]==2 ) {//GCAG
jCan1=3;
jPen1=P.scoreGapGCAG;
} else if ( G[gAend+jR1+1]==1 && G[gAend+jR1+2]==3 && G[gBstart1+jR1-1]==2 && G[gBstart1+jR1]==1 ) {//CTGC
jCan1=4;
jPen1=P.scoreGapGCAG;
} else if ( G[gAend+jR1+1]==0 && G[gAend+jR1+2]==3 && G[gBstart1+jR1-1]==0 && G[gBstart1+jR1]==1 ) {//ATAC
jCan1=5;
jPen1=P.scoreGapATAC;
} else if ( G[gAend+jR1+1]==2 && G[gAend+jR1+2]==3 && G[gBstart1+jR1-1]==0 && G[gBstart1+jR1]==3 ) {//GTAT
jCan1=6;
jPen1=P.scoreGapATAC;
} else {
jCan1=0;
jPen1=P.scoreGapNoncan;
};
Score2 += jPen1;
};
if (maxScore2 < Score2 ) {//check if the score is the highest. TODO: record the next highest score
maxScore2=Score2;
jR=jR1; //this is the last base of donor
jCan=jCan1;
jPen=jPen1;
};
jR1++;
} while ( jR1 < int(rBend) - int(rAend) );// - int(P.alignSJoverhangMin) );//TODO: do not need to search the full B-transcript, can stop as soon as Score goes down by more than
//repeat length: go back and forth around jR to find repeat length
uint jjL=0,jjR=0;
while ( gAend+jR>=jjL && G[gAend-jjL+jR]==G[gBstart1-jjL+jR] && G[gAend-jjL+jR]<4 && jjL<=MAX_SJ_REPEAT_SEARCH) {//go back
jjL++;
};
while ( gAend+jjR+jR+1<mapGen.nGenome && G[gAend+jjR+jR+1]==G[gBstart1+jjR+jR+1] && G[gAend+jjR+jR+1]<4 && jjR<=MAX_SJ_REPEAT_SEARCH) {//go forward
jjR++;
};
if (jCan<=0) {//flush deletions and non-canonical junction to the left
jR-=jjL;
if (int(trA->exons[trA->nExons-1][EX_L])+jR<1) return -1000005;
jjR+=jjL;
jjL=0;
};
//TODO check here if the internal exon length < minDa, if so exit w/o stitiching
for (int ii=min(1,jR+1);ii<=max(rGap,jR);ii++) {//score donor and acceptor
uint g1=(ii<=jR) ? (gAend+ii):(gBstart1+ii);
if (G[g1]<4 && R[rAend+ii]<4) {//only penalize non-N bases
if ( R[rAend+ii]==G[g1] ) {
if (ii>=1 && ii <=rGap) {//only add +score and matches within the gap
Score+=scoreMatch;
nMatch++;
};
} else {//add -score and MM for all bases
Score-=scoreMatch;
nMM++;
if (ii<1 || ii>rGap) {//subtract previuosly presumed matches
Score-=scoreMatch;
nMatch--;
// if (ii<=jR) nMM--;
};
};
};
};
//score the gap
if (mapGen.sjdbN>0) {//check if the junction is annotated
uint jS=gAend+jR+1, jE=gBstart1+jR;//intron start/end
int sjdbInd=binarySearch2(jS,jE,mapGen.sjdbStart,mapGen.sjdbEnd,mapGen.sjdbN);
if (sjdbInd<0) {
if (Del>=P.alignIntronMin) {
Score += P.scoreGap + jPen; //genome gap penalty + non-canonical penalty
} else {//deletion
Score += Del*P.scoreDelBase + P.scoreDelOpen;
jCan=-1;
trA->sjAnnot[trA->nExons-1]=0;
// jjR-=jjL;
// jR-=jjL;
// jjL=0;
// trA->shiftSJ[trA->nExons-1][0]=0;
// trA->shiftSJ[trA->nExons-1][1]=jjR;
};
} else {//annotated
jCan=mapGen.sjdbMotif[sjdbInd];
if (mapGen.sjdbMotif[sjdbInd]==0) {//shift to match annotations
if (L<=mapGen.sjdbShiftLeft[sjdbInd] || trA->exons[trA->nExons-1][EX_L]<=mapGen.sjdbShiftLeft[sjdbInd]) {
//this is not needed, the check below rAend+jR >= rBend is enough
//it changes the results slightly, so will keep for now. Will remove in STAR3
return -1000006;
};
jR += (int) mapGen.sjdbShiftLeft[sjdbInd];
if ( rAend+jR >= rBend ) {//jR is shifted past rBend
return -1000006;
};
jjL=mapGen.sjdbShiftLeft[sjdbInd];
jjR=mapGen.sjdbShiftRight[sjdbInd];
};
trA->sjAnnot[trA->nExons-1]=1;
trA->sjStr[trA->nExons-1]=mapGen.sjdbStrand[sjdbInd];
Score += P.pGe.sjdbScore;
};
} else {//no annotation
if (Del>=P.alignIntronMin) {//junction, not short deletion
Score += P.scoreGap + jPen;
} else {
Score += Del*P.scoreDelBase + P.scoreDelOpen;
jCan=-1;
trA->sjAnnot[trA->nExons-1]=0;
};
};
trA->shiftSJ[trA->nExons-1][0]=jjL;
trA->shiftSJ[trA->nExons-1][1]=jjR;
trA->canonSJ[trA->nExons-1]=jCan;
if (trA->sjAnnot[trA->nExons-1]==0) {//strand for unannotated junctions
if (jCan>0) {
trA->sjStr[trA->nExons-1]=2-jCan%2; //1=+,2=-
} else {
trA->sjStr[trA->nExons-1]=0;
};
};
} else if ( rGap>gGap ) {//insertion: if also gGap>0, need to stitch
Ins=rGap-gGap;
nIns=1;
if (gGap==0) {//simple insertion, no need to stitch
jR=0;
} else if (gGap<0) {//overlapping seeds: reduce the score
jR=0;
for (int ii=0; ii<-gGap; ii++) {
Score -= scoreMatch;
};
} else {//stitch: define the exon boundary jR
int Score1=0; int maxScore1=0;
for (int jR1=1;jR1<=gGap;jR1++) {//scan to the right to find the best score
if (G[gAend+jR1]<4) {//only penalize goog genome bases
Score1+=( R[rAend+jR1]==G[gAend+jR1] ) ? scoreMatch:-scoreMatch;
Score1+=( R[rAend+Ins+jR1]==G[gAend+jR1] ) ? -scoreMatch:+scoreMatch;
};
if (Score1>maxScore1 || (Score1==maxScore1 && P.alignInsertionFlush.flushRight)) {//equal sign (>=) flushes insertions to the right
maxScore1=Score1;
jR=jR1;
};
};
for (int ii=1;ii<=gGap;ii++) {//score donor and acceptor
uint r1=rAend+ii+(ii<=jR ? 0:Ins);
if (G[gAend+ii]<4 && R[r1]<4) {
if ( R[r1]==G[gAend+ii] ) {
Score+=scoreMatch;
nMatch++;
} else {//add -score and MM for all bases
Score-=scoreMatch;
nMM++;
};
};
};
};
if (P.alignInsertionFlush.flushRight) {
for (; jR<(int)rBend-(int)rAend-(int)Ins; jR++ ){//flush the indel to the right as much as possible
if (R[rAend+jR+1]!=G[gAend+jR+1] || G[gAend+jR+1]==4) {
break;
};
};
if (jR==(int)rBend-(int)rAend-(int)Ins) {//nothing left of the B-piece
return -1000009;
};
};
Score += Ins*P.scoreInsBase + P.scoreInsOpen;
jCan=-2; //marks insertion though it's not used below
}; //different types of gaps selection
#ifdef COMPILE_FOR_LONG_READS
if ( (trA->nMM + nMM)<=outFilterMismatchNmaxTotal )
// if ( Score>0 && nMM<=200 )
#else
if ( (trA->nMM + nMM)<=outFilterMismatchNmaxTotal \
&& ( jCan<0 || (jCan<7 && nMM<= (uint) P.alignSJstitchMismatchNmax[(jCan+1)/2]) ) )
#endif
{//stitching worked only if there no mis-matches for non-GT/AG junctions
trA->nMM += nMM;
trA->nMatch += nMatch;
if (Del>=P.alignIntronMin) {
trA->nGap += nDel;
trA->lGap += Del;
} else {
trA->nDel += nDel;
trA->lDel += Del;
};
//modify exons
if (Del==0 && Ins==0) {//no gap => no new exon, extend the boundary of the previous exon
trA->exons[trA->nExons-1][EX_L] += rBend-rAend;
} else if (Del>0) { //deletion:ca only have Del> or Ins>0
trA->exons[trA->nExons-1][EX_L] += jR; //correct the previous exon boundary
trA->exons[trA->nExons][EX_L] = rBend-rAend-jR; //new exon length
trA->exons[trA->nExons][EX_R] = rAend+jR+1; //new exon r-start
trA->exons[trA->nExons][EX_G] = gBstart1+jR+1; //new exon g-start
trA->nExons++;
} else if (Ins>0) { //Ins>0;
trA->nIns += nIns;
trA->lIns += Ins;
trA->exons[trA->nExons-1][EX_L] += jR; //correct the previous exon boundary
trA->exons[trA->nExons][EX_L] = rBend-rAend-jR-Ins; //new exon length
trA->exons[trA->nExons][EX_R] = rAend+jR+Ins+1; //new exon r-start
trA->exons[trA->nExons][EX_G] = gAend+1+jR; //new exon g-start
trA->canonSJ[trA->nExons-1]=-2; //mark insertion
trA->sjAnnot[trA->nExons-1]=0;
trA->nExons++;
};
} else {//stitching was not accepted
return -1000007;
};
} else if (gBstart+trA->exons[0][EX_R]+P.alignEndsProtrude.nBasesMax >= trA->exons[0][EX_G] || trA->exons[0][EX_G] < trA->exons[0][EX_R]){//if (iFragA==iFragB) stitch aligns from different fragments
//CHECK: this second confdition does not make sense
if (P.alignMatesGapMax>0 && gBstart > trA->exons[trA->nExons-1][EX_G] + trA->exons[trA->nExons-1][EX_L] + P.alignMatesGapMax) {
return -1000004; //gap between mates too large
};
//extend the fragments inside
//note, that this always works, i.e. Score>0
for (uint ii=rBstart;ii<rBstart+L;ii++) Score+=scoreMatch; //add QS for mapped portions
Transcript trExtend;
//TODO: compare extensions to the left and right, pick the best one to be performed first
//otherwise if a large nMM is reached in the 2st extension, it will prevent the 2nd extension
//use the following example:
//>1
//TTCTGTGTCTCCCCCTCCCCCACTGGCTACATGGAGACAGGGGGGGGGGGCCGGGCGGTTCCCGGGCAGAAAAAAA
//>1
//AATATTTGGAACACTTATGTGAAAAATGATTTGTTTTTCTGAAATTTACGTTTCTCTCTGAGTCCTGTAACTGTCC
trExtend.reset();
if ( extendAlign(R, G, rAend+1, gAend+1, 1, 1, DEF_readSeqLengthMax, trA->nMatch, trA->nMM, outFilterMismatchNmaxTotal, P.outFilterMismatchNoverLmax, \
P.alignEndsType.ext[trA->exons[trA->nExons-1][EX_iFrag]][1], &trExtend) ) {
trA->add(&trExtend);
Score += trExtend.maxScore;
trA->exons[trA->nExons-1][EX_L] += trExtend.extendL;
};// if extendAlign for read A
trA->exons[trA->nExons][EX_R] = rBstart;
trA->exons[trA->nExons][EX_G] = gBstart;
trA->exons[trA->nExons][EX_L] = L;
trA->nMatch += L;
trExtend.reset();
//if end extension needs to be forced, use large length. Otherwise, only extend until the beginning of the transcript
uint extlen=P.alignEndsType.ext[iFragB][1] ? DEF_readSeqLengthMax : gBstart-trA->exons[0][EX_G]+trA->exons[0][EX_R];
if ( extendAlign(R, G, rBstart-1, gBstart-1, -1, -1, extlen, trA->nMatch, trA->nMM, outFilterMismatchNmaxTotal, P.outFilterMismatchNoverLmax, \
P.alignEndsType.ext[iFragB][1], &trExtend) ) {
trA->add(&trExtend);
Score += trExtend.maxScore;
trA->exons[trA->nExons][EX_R] -= trExtend.extendL;
trA->exons[trA->nExons][EX_G] -= trExtend.extendL;
trA->exons[trA->nExons][EX_L] += trExtend.extendL;
}; //if extendAlign B
trA->canonSJ[trA->nExons-1]=-3; //mark different fragments junction
trA->sjAnnot[trA->nExons-1]=0;
trA->nExons++;
} else {//no stitching possible
return -1000008;
};
};
trA->exons[trA->nExons-1][EX_iFrag]=iFragB; //the new exon belongs to fragment iFragB
trA->exons[trA->nExons-1][EX_sjA]=sjAB;
return Score;
};
|