File: problem_1.cc

package info (click to toggle)
roboptim-core 2.0-7
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 1,488 kB
  • ctags: 1,160
  • sloc: cpp: 5,388; sh: 395; ansic: 387; makefile: 25; python: 19
file content (155 lines) | stat: -rw-r--r-- 4,469 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
// Copyright (C) 2013 by Thomas Moulard, AIST, CNRS.
//
// This file is part of the roboptim.
//
// roboptim is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// roboptim is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with roboptim.  If not, see <http://www.gnu.org/licenses/>.

#include "common.hh"

namespace roboptim
{
  namespace schittkowski
  {
    namespace problem1
    {
      struct ExpectedResult
      {
	static const double f0;
	static const double x[];
	static const double fx;
      };
      const double ExpectedResult::f0 = 909.;
      const double ExpectedResult::x[] = {1., 1.};
      const double ExpectedResult::fx = 0.;

      template <typename T>
      class F : public GenericDifferentiableFunction<T>
      {
      public:
	ROBOPTIM_DIFFERENTIABLE_FUNCTION_FWD_TYPEDEFS
	(GenericDifferentiableFunction<T>);

	explicit F () throw ();
	void
	impl_compute (result_t& result, const argument_t& x) const throw ();
	void
	impl_gradient (gradient_t& grad, const argument_t& x, size_type)
	  const throw ();
      };

      template <typename T>
      F<T>::F () throw ()
	: GenericDifferentiableFunction<T>
	  (2, 1, "100 (x₁ - x₀²)² + (1 - x₀)²")
      {}

      template <typename T>
      void
      F<T>::impl_compute (result_t& result, const argument_t& x)
	const throw ()
      {
	result[0] = 100 * std::pow (x[1] - std::pow (x[0], 2), 2)
	  + std::pow (1 - x[0], 2);
      }

      template <>
      void
      F<EigenMatrixSparse>::impl_gradient
      (gradient_t& grad, const argument_t& x, size_type)
	const throw ()
      {
	grad.insert (0) =
	  -400 * x[0] * (x[1] - std::pow (x[0], 2)) - 2 * (1 - x[0]);
	grad.insert (1) = 200 * (x[1] - std::pow (x[0], 2));
      }

      template <typename T>
      void
      F<T>::impl_gradient (gradient_t& grad, const argument_t& x, size_type)
	const throw ()
      {
	grad[0] = -400 * x[0] * (x[1] - std::pow (x[0], 2)) - 2 * (1 - x[0]);
	grad[1] = 200 * (x[1] - std::pow (x[0], 2));
      }
    } // end of namespace problem1.
  } // end of namespace schittkowski.
} // end of namespace roboptim.

BOOST_FIXTURE_TEST_SUITE (schittkowski, TestSuiteConfiguration)

BOOST_AUTO_TEST_CASE (schittkowski_problem1)
{
  using namespace roboptim;
  using namespace roboptim::schittkowski::problem1;

  // Build problem.
  F<functionType_t> f;
  solver_t::problem_t problem (f);

  problem.argumentBounds ()[1] = F<functionType_t>::makeLowerInterval (-1.5);

  F<functionType_t>::argument_t x (2);
  x << -2., 1.;
  problem.startingPoint () = x;

  BOOST_CHECK_CLOSE (f (x)[0], ExpectedResult::f0, 1e-6);

  std::cout << f.inputSize () << std::endl;
  std::cout << problem.function ().inputSize () << std::endl;

  // Initialize solver.
  SolverFactory<solver_t> factory (SOLVER_NAME, problem);
  solver_t& solver = factory ();

  std::cout << f.inputSize () << std::endl;
  std::cout << problem.function ().inputSize () << std::endl;

  // Compute the minimum and retrieve the result.
  solver_t::result_t res = solver.minimum ();

  std::cout << f.inputSize () << std::endl;
  std::cout << problem.function ().inputSize () << std::endl;


  // Display solver information.
  std::cout << solver << std::endl;

  // Check if the minimization has succeed.
  if (res.which () != solver_t::SOLVER_VALUE)
    {
      std::cout << "A solution should have been found. Failing..."
                << std::endl
                << boost::get<SolverError> (res).what ()
                << std::endl;
      BOOST_CHECK_EQUAL (res.which (), solver_t::SOLVER_VALUE);
      return;
    }

  // Get the result.
  Result& result = boost::get<Result> (res);

  // Check final x.
  for (unsigned i = 0; i < result.x.size (); ++i)
    BOOST_CHECK_CLOSE (result.x[i], ExpectedResult::x[i], 1e-6);

  // Check final value.
  BOOST_CHECK_CLOSE (1. + result.value[0], 1. + ExpectedResult::fx, 1e-6);


  // Display the result.
  std::cout << "A solution has been found: " << std::endl
	    << result << std::endl;
}

BOOST_AUTO_TEST_SUITE_END ()