1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
// Copyright (C) 2009 by Thomas Moulard, AIST, CNRS, INRIA.
//
// This file is part of the roboptim.
//
// roboptim is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// roboptim is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with roboptim. If not, see <http://www.gnu.org/licenses/>.
#include "shared-tests/fixture.hh"
#include <iostream>
#include <roboptim/core/io.hh>
#include <roboptim/core/plugin/dummy.hh>
using namespace roboptim;
// Specify the solver that will be used.
typedef DummySolver solver_t;
boost::shared_ptr<boost::test_tools::output_test_stream> output;
// Define a simple function.
struct F : public Function
{
F () : Function (4, 1, "a * d * (a + b + c) + d")
{}
void impl_compute (result_t& result,
const argument_t& argument) const throw ()
{
result (0) = argument[0] * argument[3]
* (argument[0] + argument[1] + argument[2]) + argument[3];
}
// No gradient, hessian.
};
struct CountUnaryFunction
{
typedef void Result;
CountUnaryFunction (int& cnt)
: cnt_ (cnt)
{}
void operator () (double x)
{
(*output) << "Discrete point: " << x
<< " (cnt: " << ++cnt_ << ")"
<< std::endl;
}
private:
int& cnt_;
};
BOOST_FIXTURE_TEST_SUITE (core, TestSuiteConfiguration)
BOOST_AUTO_TEST_CASE (simple)
{
output = retrievePattern ("simple");
// Instantiate the function and the problem.
F f;
DummySolver::problem_t pb (f);
(*output) << pb << std::endl;
// Check that the problem is well formed.
BOOST_CHECK_EQUAL (&pb.function (), &f);
BOOST_CHECK_EQUAL (pb.constraints ().size (), 0u);
BOOST_CHECK (!pb.startingPoint ());
Function::vector_t x (4);
x.setZero ();
pb.startingPoint () = x;
BOOST_CHECK_EQUAL (pb.startingPoint ()
&& pb.startingPoint ()->size (), 4);
BOOST_CHECK_EQUAL (pb.boundsVector ().size (), 0u);
BOOST_CHECK_EQUAL (pb.argumentBounds ().size (), 4u);
BOOST_CHECK
(pb.argumentBounds ()[0] == Function::makeInfiniteInterval ()
&& pb.argumentBounds ()[1] == Function::makeInfiniteInterval ()
&& pb.argumentBounds ()[2] == Function::makeInfiniteInterval ()
&& pb.argumentBounds ()[3] == Function::makeInfiniteInterval ());
BOOST_CHECK_EQUAL (pb.scalesVector ().size (), 0u);
BOOST_CHECK_EQUAL (pb.argumentScales ().size (), 4u);
BOOST_CHECK
(pb.argumentScales ()[0] == 1.
&& pb.argumentScales ()[1] == 1.
&& pb.argumentScales ()[2] == 1.
&& pb.argumentScales ()[3] == 1.);
F* g = new F ();
pb.addConstraint (boost::shared_ptr<F> (g),
Function::makeInterval (0., 5.), 3.5);
BOOST_CHECK_EQUAL (pb.constraints ().size (), 1u);
BOOST_CHECK (&pb.constraints ()[0] != 0);
BOOST_CHECK_EQUAL (pb.boundsVector ().size (), 1u);
BOOST_CHECK_EQUAL (pb.boundsVector ()[0][0].first,
0.);
BOOST_CHECK_EQUAL (pb.boundsVector ()[0][0].second,
5.);
BOOST_CHECK_EQUAL (pb.scalesVector ().size (), 1u);
BOOST_CHECK_EQUAL (pb.scalesVector ()[0][0], 3.5);
// Try to solve it with the DummySolver (direct instantiation, no plug-in).
solver_t solver (pb);
solver_t::result_t res = solver.minimum ();
solver.getMinimum<SolverError> ();
(*output) << pb << std::endl
<< "---" << std::endl
<< solver << std::endl;
// Try to get the minimum from a GenericSolver*.
GenericSolver* gs = &solver;
(*output) << gs->getMinimum<SolverError> ().what ()
<< std::endl;
// Check iteration in discrete intervals.
{
int cnt = 0;
CountUnaryFunction count (cnt);
{
Function::discreteInterval_t interval (2.3, 3., 0.5);
Function::foreach (interval, count);
BOOST_CHECK_EQUAL (cnt, 2);
(*output) << std::endl;
}
{
cnt = 0;
Function::discreteInterval_t interval (2., 3., 0.1);
Function::foreach (interval, count);
BOOST_CHECK_EQUAL (cnt, 11);
(*output) << std::endl;
}
{
cnt = 0;
Function::discreteInterval_t interval (0.8, 10.8, 1.);
Function::foreach (interval, count);
BOOST_CHECK_EQUAL (cnt, 11);
(*output) << std::endl;
}
}
std::cout << output->str () << std::endl;
BOOST_CHECK (output->match_pattern ());
}
BOOST_AUTO_TEST_SUITE_END ()
|