File: twice-derivable-function.cc

package info (click to toggle)
roboptim-core 2.0-7
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 1,488 kB
  • ctags: 1,160
  • sloc: cpp: 5,388; sh: 395; ansic: 387; makefile: 25; python: 19
file content (148 lines) | stat: -rw-r--r-- 4,059 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
// Copyright (C) 2009 by Thomas Moulard, AIST, CNRS, INRIA.
//
// This file is part of the roboptim.
//
// roboptim is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// roboptim is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with roboptim.  If not, see <http://www.gnu.org/licenses/>.

#include "shared-tests/fixture.hh"

#include <iostream>

#include <roboptim/core/io.hh>
#include <roboptim/core/twice-differentiable-function.hh>
#include <roboptim/core/util.hh>

using namespace roboptim;

struct Null : public TwiceDifferentiableFunction
{
  Null () : TwiceDifferentiableFunction (1, 1, "null function")
  {}

  void impl_compute (result_t& res, const argument_t&) const throw ()
  {
    res.setZero ();
  }

  void impl_gradient (gradient_t& grad, const argument_t&,
		      size_type) const throw ()
  {
    grad.setZero ();
  }

  void impl_hessian (hessian_t& h, const argument_t&,
		     size_type) const throw ()
  {
    h.setZero ();
  }
};

struct NoTitle : public TwiceDifferentiableFunction
{
  NoTitle () : TwiceDifferentiableFunction (1, 1)
  {}

  void impl_compute (result_t& res, const argument_t&) const throw ()
  {
    res.setZero ();
  }

  void impl_gradient (gradient_t& grad, const argument_t&,
		      size_type) const throw ()
  {
    grad.setZero ();
  }

  void impl_hessian (hessian_t& h, const argument_t&, size_type)
    const throw ()
  {
    h.setZero ();
  }
};

BOOST_FIXTURE_TEST_SUITE (core, TestSuiteConfiguration)

BOOST_AUTO_TEST_CASE (twice_derivable_function)
{
  boost::shared_ptr<boost::test_tools::output_test_stream>
    output = retrievePattern ("twice-derivable-function");

  Null null;
  NoTitle notitle;

  Null::vector_t x (1);
  x[0] = 42.;
  Null::hessian_t h (null.hessianSize ().first,
		     null.hessianSize ().second);
  Null::gradient_t grad (null.gradientSize ());

  (*output) << null << std::endl
	    << notitle << std::endl;

  (*output) << null.inputSize () << std::endl
	    << notitle.inputSize () << std::endl;

  (*output) << null.outputSize () << std::endl
	    << notitle.outputSize () << std::endl;

  (*output) << null.getName () << std::endl
	    << notitle.getName () << std::endl;

  (*output) << null.isValidResult (null (x)) << std::endl
	    << notitle.isValidResult (notitle (x)) << std::endl;

  (*output) << null (x) << std::endl
	    << notitle (x) << std::endl;

  (*output) << null.gradient (x) << std::endl
	    << notitle.gradient (x) << std::endl;

  null.gradient (grad, x);
  (*output) << grad << std::endl;
  notitle.gradient (grad, x);
  (*output) << grad << std::endl;

  (*output) << null.gradientSize () << std::endl
	    << notitle.gradientSize () << std::endl;

  (*output) << null.jacobianSize () << std::endl
	    << notitle.jacobianSize () << std::endl;

  (*output) << null.isValidGradient (null.gradient (x)) << std::endl
	    << notitle.isValidGradient (notitle.gradient (x)) << std::endl;

  (*output) << null.isValidJacobian (null.jacobian (x)) << std::endl
	    << notitle.isValidJacobian (notitle.jacobian (x)) << std::endl;


  (*output) << null.hessian (x) << std::endl
	    << notitle.hessian (x) << std::endl;

  null.hessian (h, x);
  (*output) << h << std::endl;
  notitle.hessian (h, x);
  (*output) << h << std::endl;


  (*output) << null.hessianSize () << std::endl
	    << notitle.hessianSize () << std::endl;

  (*output) << null.isValidHessian (null.hessian (x)) << std::endl
	    << notitle.isValidHessian (notitle.hessian (x)) << std::endl;

  std::cout << output->str () << std::endl;
  BOOST_CHECK (output->match_pattern ());
}

BOOST_AUTO_TEST_SUITE_END ()