File: rtdelphi.cpp

package info (click to toggle)
robotour 3.1.1-1
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 2,596 kB
  • ctags: 2,972
  • sloc: cpp: 17,705; sh: 3,060; ansic: 2,778; makefile: 144
file content (491 lines) | stat: -rwxr-xr-x 10,229 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
/*
 * rtdelphi.cpp
 * 
 * Copyright (c) 2000-2004 by Florian Fischer (florianfischer@gmx.de)
 * and Martin Trautmann (martintrautmann@gmx.de) 
 * 
 * This file may be distributed and/or modified under the terms of the 
 * GNU General Public License version 2 as published by the Free Software 
 * Foundation. 
 * 
 * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
 * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 * 
 */

// robdelphi.cpp: Implementierung der Klasse DelphiDataInputStream.
//
//////////////////////////////////////////////////////////////////////

#include "rtdelphi.h"

#include "rtstreams.h"
#include "rtstring.h"

namespace lrt {

///////////////////// Variant /////////////////////////////////////

Variant::Variant() : curType(typeInt), i(0)
{}

Variant::Variant(int i) : curType(typeInt), i(i)
{}

Variant::Variant(double d) : curType(typeDouble), d(d)
{}

Variant::Variant(const String& str) : curType(typeString), str(new String(str))
{}


Variant::~Variant()
{
	if(curType == typeString)
		delete str;
}

Variant::Variant(const Variant& var) : curType(var.curType)
{
	switch(curType) {
	  case typeInt:
		i = var.i;
		break;
	  case typeDouble:
		d = var.d;
		break;
	  case typeString:
		str = new String(*var.str);
		break;
	}
}

Variant& Variant::operator=(const Variant& var)
{
	if(curType == typeString)
		delete str;

	curType = var.curType;
	switch(curType) {
	  case typeInt:
		i = var.i;
		break;
	  case typeDouble:
		d = var.d;
		break;
	  case typeString:
		str = new String(*var.str);
		break;
	}

	return *this;
}

void Variant::set(int i)
{
	if(curType == typeString)
		delete str;

	curType = typeInt;
	this->i = i;
}

void Variant::set(double d)
{
	if(curType == typeString)
		delete str;

	curType = typeDouble;
	this->d = d;
}

void Variant::set(const String& str)
{
	if(curType == typeString)
		delete this->str;

	curType = typeDouble;
	this->str = new String(str);
}

int Variant::getInt(int def) const
{
	switch(curType) {
	  case typeInt:
		return i;
	  case typeDouble:
		return (int)d;
	  case typeString:
		return str->intValue(def);
	}
	return 0; // unreachable
}

double Variant::getDouble(double def) const
{
	switch(curType) {
	  case typeInt:
		return (double)i;
	  case typeDouble:
		return d;
	  case typeString:
		return str->doubleValue(def);
	}
	return 0; // unreachable
}

String Variant::getString() const
{
	switch(curType) {
	  case typeInt:
		return String(i);
	  case typeDouble:
		return String(d);
	  case typeString:
		return String(*str);
	}
	return String(); // unreachable
}

Variant::VariantType Variant::getCurrentType() const
{
	return curType;
}


/////////////////// DelphiDataInputStream ////////////////////////

DelphiDataInputStream::DelphiDataInputStream(InputStream* in) : FilterInputStream(in)
{
}

DelphiDataInputStream::DelphiDataInputStream(const String& filename) :
	FilterInputStream(new FileInputStream(filename, false))
{
}


DelphiDataInputStream::~DelphiDataInputStream() 
{
}


Variant DelphiDataInputStream::readAny()
{
	int byte = read(); // prefix

	if(byte < 0) return Variant();

	else if((byte == 0x06) || (byte == 0x0C))
		return Variant(doReadString(byte));
	else if((byte >= 0x02) && (byte <= 0x04))
		return Variant(doReadInt(byte));
	else if(byte == 0x05)
		return Variant(doReadDouble(byte));

	else
		System::exit(75, "Unsupported Delphi format 0x" + String(byte, 16));

	return Variant(); // unreachable
}

String DelphiDataInputStream::readString()
{
	int byte = read(); // prefix

	if(byte < 0) return "";

	return doReadString(byte);
}

String DelphiDataInputStream::doReadString(int type)
{
	int byte, length;

	if(type == 0x06) // short string: length as byte
		length = read();
	else if(type == 0x0C) // long string: length as 32Bit
	{
		length = read();
		length += read() << 8;
		length += read() << 16;
		length += read() << 24;
	}
	else
		System::exit(76, "Unsupported Delphi String format 0x" + String(type, 16));

	String ret;
	
	for(int i = 0; i < length; i++)
	{
		byte = read();
		if(byte < 0) return ret; // file end
		ret += ((char)byte);
	}

	return ret;
}

int DelphiDataInputStream::readInt()
{
	int byte = read(); // prefix

	if(byte < 0) return 0;

	return doReadInt(byte);
}

int DelphiDataInputStream::doReadInt(int type)
{
	int ret;

	// 8-bit integer
	if(type == 0x02)
	{
		ret = read();
		if(ret & 0x80) // negative value
			ret |= 0xFFFFFF00;
		return ret;
	}
	// 16-bit integer
	else if(type == 0x03)
	{
		ret = read();
		ret += read() << 8;
		if(ret & 0x8000) // negative value
			ret |= 0xFFFF0000;
		return ret;
	}
	// 32-bit integer
	else if(type == 0x04)
	{
		ret = read();
		ret += read() << 8;
		ret += read() << 16;
		ret += read() << 24;
		return ret;
	}
	else
		System::exit(77, "Unsupported Delphi number format 0x" + String(type, 16));
	return 0; // unreachable
}

double DelphiDataInputStream::readDouble()
{
	int byte = read(); // prefix

	if(byte < 0) return 0;

	return doReadDouble(byte);
}

double DelphiDataInputStream::doReadDouble(int type)
{
	if(type == 0x05)
	{
		Array<unsigned char> ld(10);
		for(int b = 0; b < 10; b++)
			ld[b] = read();
		return ld2d(ld);
	}
	else
		System::exit(74, "Unsupported Delphi floating-point format 0x" + String(type, 16));

	return 0; // unreachable
}

double DelphiDataInputStream::ld2d(Array<unsigned char>& ld)
{
	if(sizeof(double) != 8) 
		System::exit(70, "IEEE754-compliant 8-byte double type required.");

	double ret;
	unsigned char* dd = ((unsigned char*)(&ret));

	ld.reverse(); // work on big endian

	// copy over
		 // sign & bias    // 2 exponent bits      // 4 exponent bits
	dd[0] = (ld[0] & 0xC0) | ((ld[0] & 0x03) << 4) | ((ld[1] & 0xF0) >> 4);
		 // 4 exponent bits     // 4 mantissa bits
	dd[1] = ((ld[1] & 0x0F) << 4) | ((ld[2] & 0x7F) >> 3);
	dd[2] = (ld[2] << 5) | (ld[3] >> 3);
	dd[3] = (ld[3] << 5) | (ld[4] >> 3);
	dd[4] = (ld[4] << 5) | (ld[5] >> 3);
	dd[5] = (ld[5] << 5) | (ld[6] >> 3);
	dd[6] = (ld[6] << 5) | (ld[7] >> 3);
	dd[7] = (ld[7] << 5) | (ld[8] >> 3);

	ld.reverse(); // return unchanged ld

	if(System::isLittleEndian())
		inverseByteOrder(dd, 8); // inverse double to match system b.o.

	return ret;
}

void DelphiDataInputStream::inverseByteOrder(unsigned char* data, int len)
{
  unsigned char t;
  int len_ = len - 1;
  for(int i = (len >> 1) - 1; i >= 0; i--)
  {
	t = data[i];
	data[i] = data[len_-i];
	data[len_-i] = t;
  }
}

///////////////// DelphiDataOutputStream //////////////////////////

DelphiDataOutputStream::DelphiDataOutputStream(OutputStream* out) : FilterOutputStream(out)
{
}

bool DelphiDataOutputStream::writeAny(const Variant& var)
{
	Variant::VariantType type = var.getCurrentType();
	
	switch(type) {
	  case Variant::typeInt:
		return writeInt(var.getInt());
	  case Variant::typeDouble:
		return writeDouble(var.getDouble());
	  case Variant::typeString:
		return writeString(var.getString());
	  default:
		System::message("Warning: Unknown Variant type " + String(type));
		return writeInt(var.getInt());
	}
}

bool DelphiDataOutputStream::writeString(const String& str)
{
	bool ret = true;
	int len = str.length();

	// write prefix
	if(len <= 255)
	{ // small string
		ret &= write(0x06);
		ret &= write(len);
	}
	else
	{ // large string
		ret &= write(0x0C);
		ret &= write4(len);
	}

	ret &= write((const Array<char>&)str);

	return ret;
}

bool DelphiDataOutputStream::writeInt(int num)
{
	bool ret = true;
	int abs = Math::abs(num);

	if(abs <= 0x7F)
	{ // 8bit int
		ret &= write(0x02);
		ret &= write(num);
	}
	else if(abs <= 0x7FFF)
	{ // 16bit int
		ret &= write(0x03);
		ret &= write(num);
		ret &= write(num >> 8);
	}
	else
	{ // 32bit int
		ret &= write(0x04);
		ret &= write4(num);
	}

	return ret;
}

bool DelphiDataOutputStream::writeDouble(double num)
{
	bool ret = true;

	Array<unsigned char> ld(10);
	d2ld(num, ld);

	ret &= write(0x05); // prefix
	for(int b = 0; b < 10; b++)
		ret &= write(ld[b]);

	return ret;
}


void DelphiDataOutputStream::d2ld(double d, Array<unsigned char>& ld)
{
	if(sizeof(double) != 8) 
		System::exit(70, "IEEE754-compliant 8-byte double type required.");

	unsigned char* dd = (unsigned char*)(&d);

	if(System::isLittleEndian())
		inverseByteOrder(dd, 8);

	// is exponent zero? (exp = 7 bits from byte0 & 3 from byte1)
	bool zero = ((dd[0] & 0x7F) == 0);
	zero &= ((dd[1] & 0xE0) == 0);

	// bias exponent sign extend: only if bias = 0 & top exponent bit = 1
					// bias = 0           // next bit = 1
	bool biasextend = (((dd[0] & 0x40) == 0) && ((dd[0] & 0x20) != 0));
	ld[0] = (biasextend ? 0x3C : 0x00);

	// copy over
		  // sign & bias    2 exponent bits
	ld[0] |= (dd[0] & 0xC0) | ((dd[0] & 0x30) >> 4);
		  // 8 exponent bits
	ld[1] = ((dd[0] & 0x0F) << 4) | (dd[1] >> 4);
		  // middle place
	ld[2] = (zero ? 0x00 : 0x80);
		   // 7 mantissa bits
	ld[2] |= ((dd[1] & 0x0F) << 3) | (dd[2] >> 5);
	ld[3] = ((dd[2] & 0x1F) << 3) | (dd[3] >> 5);
	ld[4] = ((dd[3] & 0x1F) << 3) | (dd[4] >> 5);
	ld[5] = ((dd[4] & 0x1F) << 3) | (dd[5] >> 5);
	ld[6] = ((dd[5] & 0x1F) << 3) | (dd[6] >> 5);
	ld[7] = ((dd[6] & 0x1F) << 3) | (dd[7] >> 5);
	ld[8] = ((dd[7] & 0x1F) << 3);
	ld[9] = 0;

	if(System::isLittleEndian())
		inverseByteOrder(dd, 8);  // return unchanged double

	ld.reverse(); // inverse long double to return little-endian.
}

void DelphiDataOutputStream::inverseByteOrder(unsigned char* data, int len)
{
  unsigned char t;
  int len_ = len - 1;
  for(int i = (len >> 1) - 1; i >= 0; i--)
  {
	t = data[i];
	data[i] = data[len_-i];
	data[len_-i] = t;
  }
}

bool DelphiDataOutputStream::write4(int num)
{
	bool ret = true;

	ret &= write(num);
	ret &= write(num >> 8);
	ret &= write(num >> 16);
	ret &= write(num >> 24);

	return ret;
}


} // namespace