1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
|
/*
* rtdelphi.cpp
*
* Copyright (c) 2000-2004 by Florian Fischer (florianfischer@gmx.de)
* and Martin Trautmann (martintrautmann@gmx.de)
*
* This file may be distributed and/or modified under the terms of the
* GNU General Public License version 2 as published by the Free Software
* Foundation.
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
*/
// robdelphi.cpp: Implementierung der Klasse DelphiDataInputStream.
//
//////////////////////////////////////////////////////////////////////
#include "rtdelphi.h"
#include "rtstreams.h"
#include "rtstring.h"
namespace lrt {
///////////////////// Variant /////////////////////////////////////
Variant::Variant() : curType(typeInt), i(0)
{}
Variant::Variant(int i) : curType(typeInt), i(i)
{}
Variant::Variant(double d) : curType(typeDouble), d(d)
{}
Variant::Variant(const String& str) : curType(typeString), str(new String(str))
{}
Variant::~Variant()
{
if(curType == typeString)
delete str;
}
Variant::Variant(const Variant& var) : curType(var.curType)
{
switch(curType) {
case typeInt:
i = var.i;
break;
case typeDouble:
d = var.d;
break;
case typeString:
str = new String(*var.str);
break;
}
}
Variant& Variant::operator=(const Variant& var)
{
if(curType == typeString)
delete str;
curType = var.curType;
switch(curType) {
case typeInt:
i = var.i;
break;
case typeDouble:
d = var.d;
break;
case typeString:
str = new String(*var.str);
break;
}
return *this;
}
void Variant::set(int i)
{
if(curType == typeString)
delete str;
curType = typeInt;
this->i = i;
}
void Variant::set(double d)
{
if(curType == typeString)
delete str;
curType = typeDouble;
this->d = d;
}
void Variant::set(const String& str)
{
if(curType == typeString)
delete this->str;
curType = typeDouble;
this->str = new String(str);
}
int Variant::getInt(int def) const
{
switch(curType) {
case typeInt:
return i;
case typeDouble:
return (int)d;
case typeString:
return str->intValue(def);
}
return 0; // unreachable
}
double Variant::getDouble(double def) const
{
switch(curType) {
case typeInt:
return (double)i;
case typeDouble:
return d;
case typeString:
return str->doubleValue(def);
}
return 0; // unreachable
}
String Variant::getString() const
{
switch(curType) {
case typeInt:
return String(i);
case typeDouble:
return String(d);
case typeString:
return String(*str);
}
return String(); // unreachable
}
Variant::VariantType Variant::getCurrentType() const
{
return curType;
}
/////////////////// DelphiDataInputStream ////////////////////////
DelphiDataInputStream::DelphiDataInputStream(InputStream* in) : FilterInputStream(in)
{
}
DelphiDataInputStream::DelphiDataInputStream(const String& filename) :
FilterInputStream(new FileInputStream(filename, false))
{
}
DelphiDataInputStream::~DelphiDataInputStream()
{
}
Variant DelphiDataInputStream::readAny()
{
int byte = read(); // prefix
if(byte < 0) return Variant();
else if((byte == 0x06) || (byte == 0x0C))
return Variant(doReadString(byte));
else if((byte >= 0x02) && (byte <= 0x04))
return Variant(doReadInt(byte));
else if(byte == 0x05)
return Variant(doReadDouble(byte));
else
System::exit(75, "Unsupported Delphi format 0x" + String(byte, 16));
return Variant(); // unreachable
}
String DelphiDataInputStream::readString()
{
int byte = read(); // prefix
if(byte < 0) return "";
return doReadString(byte);
}
String DelphiDataInputStream::doReadString(int type)
{
int byte, length;
if(type == 0x06) // short string: length as byte
length = read();
else if(type == 0x0C) // long string: length as 32Bit
{
length = read();
length += read() << 8;
length += read() << 16;
length += read() << 24;
}
else
System::exit(76, "Unsupported Delphi String format 0x" + String(type, 16));
String ret;
for(int i = 0; i < length; i++)
{
byte = read();
if(byte < 0) return ret; // file end
ret += ((char)byte);
}
return ret;
}
int DelphiDataInputStream::readInt()
{
int byte = read(); // prefix
if(byte < 0) return 0;
return doReadInt(byte);
}
int DelphiDataInputStream::doReadInt(int type)
{
int ret;
// 8-bit integer
if(type == 0x02)
{
ret = read();
if(ret & 0x80) // negative value
ret |= 0xFFFFFF00;
return ret;
}
// 16-bit integer
else if(type == 0x03)
{
ret = read();
ret += read() << 8;
if(ret & 0x8000) // negative value
ret |= 0xFFFF0000;
return ret;
}
// 32-bit integer
else if(type == 0x04)
{
ret = read();
ret += read() << 8;
ret += read() << 16;
ret += read() << 24;
return ret;
}
else
System::exit(77, "Unsupported Delphi number format 0x" + String(type, 16));
return 0; // unreachable
}
double DelphiDataInputStream::readDouble()
{
int byte = read(); // prefix
if(byte < 0) return 0;
return doReadDouble(byte);
}
double DelphiDataInputStream::doReadDouble(int type)
{
if(type == 0x05)
{
Array<unsigned char> ld(10);
for(int b = 0; b < 10; b++)
ld[b] = read();
return ld2d(ld);
}
else
System::exit(74, "Unsupported Delphi floating-point format 0x" + String(type, 16));
return 0; // unreachable
}
double DelphiDataInputStream::ld2d(Array<unsigned char>& ld)
{
if(sizeof(double) != 8)
System::exit(70, "IEEE754-compliant 8-byte double type required.");
double ret;
unsigned char* dd = ((unsigned char*)(&ret));
ld.reverse(); // work on big endian
// copy over
// sign & bias // 2 exponent bits // 4 exponent bits
dd[0] = (ld[0] & 0xC0) | ((ld[0] & 0x03) << 4) | ((ld[1] & 0xF0) >> 4);
// 4 exponent bits // 4 mantissa bits
dd[1] = ((ld[1] & 0x0F) << 4) | ((ld[2] & 0x7F) >> 3);
dd[2] = (ld[2] << 5) | (ld[3] >> 3);
dd[3] = (ld[3] << 5) | (ld[4] >> 3);
dd[4] = (ld[4] << 5) | (ld[5] >> 3);
dd[5] = (ld[5] << 5) | (ld[6] >> 3);
dd[6] = (ld[6] << 5) | (ld[7] >> 3);
dd[7] = (ld[7] << 5) | (ld[8] >> 3);
ld.reverse(); // return unchanged ld
if(System::isLittleEndian())
inverseByteOrder(dd, 8); // inverse double to match system b.o.
return ret;
}
void DelphiDataInputStream::inverseByteOrder(unsigned char* data, int len)
{
unsigned char t;
int len_ = len - 1;
for(int i = (len >> 1) - 1; i >= 0; i--)
{
t = data[i];
data[i] = data[len_-i];
data[len_-i] = t;
}
}
///////////////// DelphiDataOutputStream //////////////////////////
DelphiDataOutputStream::DelphiDataOutputStream(OutputStream* out) : FilterOutputStream(out)
{
}
bool DelphiDataOutputStream::writeAny(const Variant& var)
{
Variant::VariantType type = var.getCurrentType();
switch(type) {
case Variant::typeInt:
return writeInt(var.getInt());
case Variant::typeDouble:
return writeDouble(var.getDouble());
case Variant::typeString:
return writeString(var.getString());
default:
System::message("Warning: Unknown Variant type " + String(type));
return writeInt(var.getInt());
}
}
bool DelphiDataOutputStream::writeString(const String& str)
{
bool ret = true;
int len = str.length();
// write prefix
if(len <= 255)
{ // small string
ret &= write(0x06);
ret &= write(len);
}
else
{ // large string
ret &= write(0x0C);
ret &= write4(len);
}
ret &= write((const Array<char>&)str);
return ret;
}
bool DelphiDataOutputStream::writeInt(int num)
{
bool ret = true;
int abs = Math::abs(num);
if(abs <= 0x7F)
{ // 8bit int
ret &= write(0x02);
ret &= write(num);
}
else if(abs <= 0x7FFF)
{ // 16bit int
ret &= write(0x03);
ret &= write(num);
ret &= write(num >> 8);
}
else
{ // 32bit int
ret &= write(0x04);
ret &= write4(num);
}
return ret;
}
bool DelphiDataOutputStream::writeDouble(double num)
{
bool ret = true;
Array<unsigned char> ld(10);
d2ld(num, ld);
ret &= write(0x05); // prefix
for(int b = 0; b < 10; b++)
ret &= write(ld[b]);
return ret;
}
void DelphiDataOutputStream::d2ld(double d, Array<unsigned char>& ld)
{
if(sizeof(double) != 8)
System::exit(70, "IEEE754-compliant 8-byte double type required.");
unsigned char* dd = (unsigned char*)(&d);
if(System::isLittleEndian())
inverseByteOrder(dd, 8);
// is exponent zero? (exp = 7 bits from byte0 & 3 from byte1)
bool zero = ((dd[0] & 0x7F) == 0);
zero &= ((dd[1] & 0xE0) == 0);
// bias exponent sign extend: only if bias = 0 & top exponent bit = 1
// bias = 0 // next bit = 1
bool biasextend = (((dd[0] & 0x40) == 0) && ((dd[0] & 0x20) != 0));
ld[0] = (biasextend ? 0x3C : 0x00);
// copy over
// sign & bias 2 exponent bits
ld[0] |= (dd[0] & 0xC0) | ((dd[0] & 0x30) >> 4);
// 8 exponent bits
ld[1] = ((dd[0] & 0x0F) << 4) | (dd[1] >> 4);
// middle place
ld[2] = (zero ? 0x00 : 0x80);
// 7 mantissa bits
ld[2] |= ((dd[1] & 0x0F) << 3) | (dd[2] >> 5);
ld[3] = ((dd[2] & 0x1F) << 3) | (dd[3] >> 5);
ld[4] = ((dd[3] & 0x1F) << 3) | (dd[4] >> 5);
ld[5] = ((dd[4] & 0x1F) << 3) | (dd[5] >> 5);
ld[6] = ((dd[5] & 0x1F) << 3) | (dd[6] >> 5);
ld[7] = ((dd[6] & 0x1F) << 3) | (dd[7] >> 5);
ld[8] = ((dd[7] & 0x1F) << 3);
ld[9] = 0;
if(System::isLittleEndian())
inverseByteOrder(dd, 8); // return unchanged double
ld.reverse(); // inverse long double to return little-endian.
}
void DelphiDataOutputStream::inverseByteOrder(unsigned char* data, int len)
{
unsigned char t;
int len_ = len - 1;
for(int i = (len >> 1) - 1; i >= 0; i--)
{
t = data[i];
data[i] = data[len_-i];
data[len_-i] = t;
}
}
bool DelphiDataOutputStream::write4(int num)
{
bool ret = true;
ret &= write(num);
ret &= write(num >> 8);
ret &= write(num >> 16);
ret &= write(num >> 24);
return ret;
}
} // namespace
|