File: cpp_client.md

package info (click to toggle)
robotraconteur 1.2.7-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 101,380 kB
  • sloc: cpp: 1,149,268; cs: 87,653; java: 58,127; python: 26,897; ansic: 356; sh: 152; makefile: 90; xml: 51
file content (740 lines) | stat: -rw-r--r-- 35,721 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
# C++ Clients {#cpp_client}

Robot Raconteur is an object-oriented client-service RPC framework. Services expose objects, which are made available to clients using "object references", sometimes referred to as "proxies". See \ref introduction for an overview of the Robot Raconteur framework.

The object types and their members are defined in "service definition" files. See \ref service_definition for more information on how service objects are defined. C++ uses `RobotRaconteurGen` to generate "thunk" source that implements the object and value types defined in service definitions. See \ref cpp_intro_cmake_thunk_source_gen, \ref robotraconteurgen, and \ref robotraconteur_generate_thunk for more information on thunk source and thunk source generation.

For C++, the thunk source generates an abstract class with pure virtual functions for accessing the members. The client uses this abstract interface class to interact with the service. The client returns a "stub" implementaton of the members, which call the remote node as needed.

Clients can choose between "synchronous" and "asynchronous" version of most member operations. Synchronous operations block the current thread, while asynchronous operations return immediately and invoke a supplied handler function when the operation is complete. See \ref cpp_threading_and_async for more information on asynchronous operations.


## Creating Client Connections {#cpp_client_connections}

Creating a client connection requires a node that has been set up. See \ref cpp_node_setup for details on how to set up a node.

Once a node has been set up, connections can be created to a service on a remote node using RobotRaconteur::RobotRaconteurNode::ConnectService or RobotRaconteur::RobotRaconteurNode::AsyncConnectService. These functions take a service URL, optional authentication information, optional client event callback, an optional desired object type, and for the asynchronous version a completion handler function. The connection operations return a RobotRaconteur::RRObjectPtr. This must be cast to the object type using RobotRaconteur::rr_cast.

Consider a simple example, with service definition type `example.my_service.MyObject` on a localhost node listening on TCP port 62222.

    // Assume that node has been set up
    using namespace RobotRaconteur;
    std::string url = "rr+tcp://localhost:62222?service=my_service";
    example::my_service::MyObjectPtr c = rr_cast<example::my_service::MyObject>(
        RobotRaconteurNode::s()->ConnectService(url)
    );

    // The connection "c" is now ready for use

An asynchronous example:

    // Assume that node has been set up
    using namespace RobotRaconteur;
    std::string url = "rr+tcp://localhost:62222?service=my_service";
    RobotRaconteurNode::s()->AsyncConnectService(
        url, "", nullptr, nullptr, "",
        [](RRObjectPtr c1, RobotRaconteurExceptionPtr err)
        {
            if (err)
            {
                // Handle a connection error
                return;
            }
            example::my_service::MyObjectPtr c = rr_cast<example::my_service::MyObject>(c1);
            // "c" is now ready for use
        }
    );

    // Continue with other tasks and accept connection on handler invocation

### Robot Raconteur URLs {#cpp_client_urls}

URLs are used to connect to services. See \ref urls for more information on the URL format.

### Authentication {#cpp_client_auth}

Services may optionally use authentication to protect the service from unauthorized users. Authentication uses a "username" and "credentials". The username is a `std::string`, and the credentials are an `RRMapPtr<std::string,RRValue>`. If username is a zero length string and/or credentials is `nullptr`, authentication is disabled and the connection is anonymous. Typically the credentials map will contain a password entry. The following example uses password authentication:

    // Assume that node has been set up
    using namespace RobotRaconteur;
    std::string url = "rr+tcp://localhost:62222?service=my_service";
    std::string username = "myusername"
    std::string password = "password123"
    RRMapPtr<std::string,RRValue> credentials = AllocateEmptyRRMap<std::string,RRValue>();
    credentials->insert(std::make_pair("password",stringToRRArray(credentials)))
    example::my_service::MyObjectPtr c = rr_cast<example::my_service::MyObject>(
        RobotRaconteurNode::s()->ConnectService(url,username,credentials)
    );

    // The connection "c" is now ready for use

### Client Listener {#cpp_client_listener}

The `listener` parameter is an optional callback function to listen for client events. The signature of the callback function is expected to match:

    void listener(ClientContextPtr, ClientServiceListenerEventType, const boost::shared_ptr<void>&)

The possible event types can be found in RobotRaconteur::ClientServiceListenerEventType .

An example of using the event listener:

    // Assume that node has been set up
    using namespace RobotRaconteur;
    std::string url = "rr+tcp://localhost:62222?service=my_service";
    example::my_service::MyObjectPtr c = rr_cast<example::my_service::MyObject>(
        RobotRaconteurNode::s()->ConnectService(
            url, "", nullptr,
            [](ClientContextPtr ctx, ClientServiceListenerEventType evt, const boost::shared_ptr<void>& p)
            {
                switch (evt)
                {
                    case ClientServiceListenerEventType_ClientClosed:
                        std::cout << "Client connection has closed" << std::endl;
                        return;
                    case ClientServiceListenerEventType_TransportConnectionClosed:
                        std::cout << "Client connection has been lost" << std::endl;
                        return;
                    default:
                        return;
                }
            }
        )
    );

    // The connection "c" is now ready for use

### Object Type {#cpp_client_connect_object_type}

The `objecttype` optional parameter can be used to specify the fully qualified object type. Use of this parameter is recommended, since services may return a newer subclass of the expected object that the client doesn't understand. If `objecttype` is specified, the desired object type will always be returned, if the service supports that object type. This parameter is one of the primary ways Robot Raconteur supports forward compatibility with newer devices.

## Disconnecting Clients {#cpp_client_disconnect}

Clients are automatically disconnected when the node is shut down, so it is normally not necessary to disconnect client connections. If closing client connections is necessary, RobotRaconteur::RobotRaconteurNode::DisconnectService or RobotRaconteur::RobotRaconteurNode::AsyncDisconnectService can be used.

## Subscriptions {#cpp_client_subscriptions}

Service subscriptions can be used instead of directly connecting and disconnecting client connections. Subscriptions automatically manage the client lifecycle, and are recommended in most situations. See \ref cpp_subscriptions for more information.

## Client Members {#cpp_client_members}

The thunk source automatically generates member proxies to access the remote service object members. These proxies make member access nearly seamless, meaning the user can for the most part ignore the fact that these members are running on a remote service. Each member type has its own interface.

More information an object members and the object message protocol can be found in \ref service_definition and \ref message_object_protocol.

### Property Members {#cpp_client_property}

Property members allow clients to "get" and "set" a property value on the service object. Properties may use any valid Robot Raconteur value type.

Property members are implemented as two access functions in the object, a "get" and "set" function. The "get" function is the name of member prepended with `get_`. It takes no arguments, and returns the current value. The "set" function is the name of the member prepended with `set_`. It takes the new property value, and returns void.

For example, the property definition:

    property double my_property

Would generate the two access functions in the C++ abstract interface:

    virtual double get_my_property();
    virtual void set_my_property(double val);

Assuming that `c` is a client connection to an object that has the member `my_property`, the following example shows getting and setting `my_property`:

    // Assume "c" is a connected client object reference with property "my_property"

    double current_value = c->get_my_property();
    std::cout << "my_property is currently: " << current_value << std::endl;

    // Set "my_property" to a new value

    c->set_my_property(1.234);

Properties can be declared `readonly` or `writeonly` using member modifiers. If a property is `readonly`, the `set_` accessor function is not generated. If a property is `writeonly`, the `get_` accessor function is not generated.

The thunk source generates asynchronous accessor functions as well as the above synchronous accessor. These functions are stored in a separate abstract interface with the same name as the standard abstract interface prefixed with `async_`. The asynchronous property accessor functions are prefixed with `async_get_` and `async_set_`. Consider the following example, where `c` is the synchronous type `example.my_service.MyObject` that contains the member `my_property`:

    // Assume "c" is a connected synchronous client object
    using namespace example::my_service;
    boost::shared_ptr<async_MyObject> c_async = rr_cast<async_MyObject>(c);

    c_async->async_get_my_property(
        [](double val, RobotRaconteurExceptionPtr err)
        {
            if (err)
            {
                std::cout << "Error occurred getting property value: " << err->what() << std::endl;
            }

            std::cout << "my_property is currently: " << val << std::endl;
        }
    );

    c_async->async_set_my_property(
        1.234, [](RobotRaconteurExceptionPtr err)
        {
            if (err)
            {
                std::cout << "Error occurred setting property value: " << err->what() << std::endl;
            }

            std::cout << "my_property value set successful" << std::endl;
        }
    );

The `async_set_` accessor will not be generated if the property is declared `readonly`. The `async_get_` accessor will not be generated if the property is declared `writeonly`.

### Function Members {#cpp_client_function}

Function members allow clients to invoke a function on the service object. Functions may have zero or more value type parameters, and return a value or be declared `void` for no return. Functions may be "normal", not using a generator, or be "generator functions" which return a generator.

#### Normal Functions {#cpp_client_normal_functions}

Normal functions accept zero or more value type parameters, invoke the remote function with these parameters, and return the result, or `void`. They are implemented in the abstract interface as a C++ function with the same name as the member.

For example, the function definition:

    function double addTwoNumbers(int32 a, double b)

Would generate the C++ function in the abstract interface:

    virtual double addTwoNumbers(int32_t a, double b);

Assuming that `c` is a client connection to an object that has the member `addTwoNumbers`, the following example shows invoking the function:

    // Assume "c" is a connected client object reference with function "addTwoNumbers"

    double result = c->addTwoNumbers(10, 1.234);
    std::cout << "addTwoNumbers result: " << result << std::endl;

An example function definition with no parameters and void return:

    function void do_something()

Would generate the C++ function in the abstract interface:

    virtual void do_something();

Functions may also be invoked asynchronously. Like properties, the asynchronous form is in the `async_` abstract interface. The asynchronous version of the function is the member name prefixed with `async_`. Examples of asynchronous function invocations:

    // Assume "c" is a connected synchronous client object
    using namespace example::my_service;
    boost::shared_ptr<async_MyObject> c_async = rr_cast<async_MyObject>(c);

    c_async->async_addTwoNumbers(10, 1.234
        [](double ret, RobotRaconteurExceptionPtr err)
        {
            if (err)
            {
                std::cout << "Error occurred invoking function: " << err->what() << std::endl;
            }

            std::cout << "addTwoNumbers returned: " << ret << std::endl;
        }
    );

    c_async->async_do_something(
        [](RobotRaconteurExceptionPtr err)
        {
            if (err)
            {
                std::cout << "Error occurred invoking function: " << err->what() << std::endl;
            }

            std::cout << "do_something() invocation successful" << std::endl;
        }
    );

#### Generator Functions {#cpp_client_generator_functions}

Generator functions are similar to normal functions, but instead of returning a value or void, they return a generator. A generator is similar to an iterator, or can implement a coroutine. See RobotRaconteur::Generator and \ref service_definition_function for more discussion on generators.

Generators operate by calling `Next()` repeatedly until no more values are available, an exception is thrown, or the client closes/aborts the generator. The generator may be Type 1, 2, or 3, depending on if the generator accepts of parameter for `Next()`, and/or if it returns a value from `Next()`.

| Generator Type | Has Return | Has Parameter |  C++ Template |
| ---            | ---        | ---           |  ---          |
| Type 1         | Yes        | Yes           | Generator<Return,Param> |
| Type 2         | Yes        | No            | Generator<Return,void>  |
| Type 3         | No         | Yes           | Generator<void,Param>   |

##### Type 1 Generators

An example definition of a Type 1 generator:

    function double{generator} addManyNumbers(int32 a, double{generator} b)

This results in the following function being generated in the abstract interface:

    virtual Generator<double,double> addManyNumbers(int32_t a);

The function returns a generator that expects a parameter and returns a value every call to `Next()`. An example using the generator function:

    // Assume "c" is a connected client object reference with function "addTwoNumbers"

    using namespace RobotRaconteur;
    Generator<double,double> gen = c->addManyNumbers(10);
    try
    {
        for (double i : {1.2,3.4,5.6})
        {
            next_res = gen->Next(i);
            std::cout << "addManyNumbers generator result: " << next_res << std::endl;
        }
        gen->Close();
    }
    catch (StopIterationException&)
    {
        std::cout << "addManyNumbers no more values" << std::endl;
    }

##### Type 2 Generators

An example definition of a Type 2 generator:

    function int32_t getSequence(int32 a, double b)

This results in the following function being generated in the abstract interface:

    virtual Generator<double,void> getSequence(int32_t a, double b);

The function returns a generator that does not expect a parameter and returns a value every call to `Next()`. An example using the generator function:

    // Assume "c" is a connected client object reference with function "getSequence"

    using namespace RobotRaconteur;
    Generator<double,void> gen = c->getSequence(10,1.23);
    try
    {
        for (size_t i=0; i<max_elems; i++)
        {
            next_res = gen->Next();
            std::cout << "getSequence generator result: " << next_res << std::endl;
        }
        throw InvalidOperationException("Generator returned too many elements");
    }
    catch (StopIterationException&)
    {
        std::cout << "getSequence no more values" << std::endl;
    }

This example receives values from `Next()` until a RobotRaconteur::StopIterationException is thrown, or until it receives more elements than expected.

##### Type 3 Generators

An example definition of a Type 3 generator:

    function void sendSequence(int32 a, double{generator} b)

This results in the following function being generated in the abstract interface:

    virtual Generator<void,double> sendSequence(int32_t a);

The function returns a generator that expects a parameter and does not return a value every call to `Next()`. An example using the generator function:

    // Assume "c" is a connected client object reference with function "sendSequence"

    using namespace RobotRaconteur;
    Generator<void,double> gen = c->sendSequence(10);

    for (double i : {1.2,3.4,5.6})
    {
        gen->Next(i);
    }
    gen->Close();

##### Asynchronous Generator Functions

Generator functions also have asynchronous C++ functions generated in the `async_` abstract interace. They follow the same rules as normal functions, but return RobotRaconteur::Generator to the handler function. RobotRaconteur::Generator implements asynchronous RobotRaconteur::Generator::AsyncNext(), RobotRaconteur::AsyncClose(), and RobotRaconteur::AsyncAbort() for use with asynchronous clients.

#### Generator Clients {#cpp_client_generators}

See RobotRaconteur::Generator for more information on generator objects. Client generators inherit from RobotRaconteur::Generator and implement communication with the remote generator on the service.

### Event Members {#cpp_client_event}

Events are used by the service to notify all connected clients an event has occurred. Events may have zero or more value type parameters. Events are sent to all connected clients. In C++, events are implemented using `boost::signals2::signal`. See the documentation for `boost::signals2::signal` for more information on using Boost.Signals2. An example event definition:

    event somethingHappened(string what, double when)

This event definition results in the following function being generated in the C++ abstract interface:

    virtual boost::signals2::signal<void(std::string, double)>& get_somethingHappened();

An example of using the event:

    // Assume "c" is a connected client object reference with event "somethingHappened"

    using namespace RobotRaconteur;
    c->get_somethingHappened().connect(
        [](std::string what, double when)
        {
            std::cout << "something happened: " << what << std::endl;
        }
    );

### ObjRef Members {#cpp_client_objref}

ObjRef members are used to access other objects within a service.  See \ref service_paths for more information on objrefs and service paths. An example objref definition:

   objref MyOtherObject other_object

This objref definition results in the following function being generated in the C++ abstract interface:

    virtual MyOtherObjectPtr get_other_object();

The function name is the member name prefixed with `get_`.

An example using this objref:

    // Assume "c" is a connected client object reference with event "somethingHappened"

    using namespace RobotRaconteur;
    MyOtherObjectPtr obj2 = c->get_other_object();
    obj2->some_function();

ObjRefs may also be indexed by `int32` or `string`. The following are member definitions for `int32` indexed objref:

    objref MyOtherObject[] other_object1
    objref MyOtherObject{int32} other_object2

They result in the following functions being generated in the abstract interface:

    virtual MyOtherObjectPtr get_other_object1(int32_t index);
    virtual MyOtherObjectPtr get_other_object2(int32_t index);

The following is an objref definition for a `string` indexed objref:

    objref MyOtherObject{string} other_object3

It results in the following function being generated in the abstract interface:

    virtual MyOtherObjectPtr get_other_object3(const std::string& index);

ObjRefs may also be invoked asynchronously. Like properties, the asynchronous form is in the `async_` abstract interface. The asynchronous version of the objref is the member name prefixed with `async_get_`. An example of invoking an objref asynchronously:

    // Assume "c" is a connected synchronous client object
    using namespace example::my_service;
    boost::shared_ptr<async_MyObject> c_async = rr_cast<async_MyObject>(c);

    c_async->async_get_other_object2(12345,
        [](MyOtherObjectPtr obj, RobotRaconteurExceptionPtr err)
        {
            if (err)
            {
                std::cout << "Error occurred invoking objref: " << err->what() << std::endl;
                return;
            }

            // Use the objref
            obj->async_some_function(
                [](RobotRaconteurExceptionPtr err)
                {
                    if (err)
                    {
                        std::cout << "Error occurred invoking function: " << err->what() << std::endl;
                    }
                }
            )
        }
    );

### Pipe Members {#cpp_client_pipe}

Pipe members provide reliable (or optionally unreliable) data streams between clients and service, in either direction. See \ref RobotRaconteur::Pipe for a discussion of pipes.

An example pipe definition:

    pipe double[] sensordata

Results in the following functions being generated in the abstract interface:

    virtual PipePtr<RRArrayPtr<double>> get_sensordata();
    virtual void set_sensordata(PipePtr<RRArrayPtr<double>> pipe);

A get accessor prefixed with `get_` and a set accessor prefixed with `set_` are generated. These are used to get and set the pipe member object in the service. For the client, only the get accessor is used.

The `get_` accessor is used to retrieve the pipe so it can be used. An example of using a pipe client:

    // Assume "c" is a connected client object reference with pipe "sensordata"

    using namespace RobotRaconteur;
    PipePtr<RRArrayPtr<double>> sensordata = c->get_sensordata();
    PipeEndpointPtr<RRArrayPtr<double>> sensordata_ep = sensordata->Connect(-1);
    double data[] = {1.23, 4.56};
    sensordata_ep->SendPacket(AttachRRArrayCopy(data,2));
    RRArrayPtr<double> recv_data = sensordata_ep->ReceivePacketWait(100);
    std::cout << "Got recv_data len: " << recv_data->size() << std::endl;

Pipes can also be used asynchronously. Retrieving a pipe from the abstract interface never blocks since the pipe client exists locally. An example of using the pipe asynchronously:

    // Assume "c" is a connected client object reference with pipe "sensordata"

    using namespace RobotRaconteur;

    // Retrieve the pipe client. This never blocks.
    PipePtr<RRArrayPtr<double>> sensordata = c->get_sensordata();

    //Connect pipe asynchronously
    sensordata->AsyncConnect(-1,
        [](PipeEndpointPtr<RRArrayPtr<double>> sensordata_ep, RobotRaconteurExceptionPtr err)
        {
            if (err)
            {
                std::cout << "Connecting pipe failed: " << err->what() << std::endl;
                return;
            }

            // Connect to signal to be notified when packets arrive
            sensordata_ep->PacketReceivedEvent.connect(
                [](PipeEndpointPtr<RRArrayPtr<double>> ep)
                {
                    while (ep->Available() > 0)
                    {
                        RRArrayPtr<double> recv_data = sensordata_ep->ReceivePacket();
                        std::cout << "Got recv_data len: " << recv_data->size() << std::endl;
                    }
                }
            )

            double data[] = {1.23, 4.56};

            // Asynchronously send packet
            sensordata_ep->AsyncSendPacket(AttachRRArrayCopy(data,2),
                [](RobotRaconteurExceptionPtr err)
                {
                    if (err)
                    {
                        std::cout << "Sending pipe packet failed: " << err->what() << std::endl;
                        return;
                    }

                    // Continue with the tasks
                }
            );

        }
    );

These example use only a few of the possible functions in RobotRaconteur::Pipe and RobotRaconteur::PipeEndpoint for the full API.

Pipes declared `readonly` may only receive packets on the client side. Pipes declared `writeonly` may only send packets on the client side.

### Callback Members {#cpp_client_callback}

Callbacks allow the service to invoke a function on a specific client. The definition is nearly identical to a `function` member, except the keyword is `callback` and generators are not supported. An example callback definition:

    callback double addTwoNumbersOnClient(int32 a, double b)

Results in the following functions being generated in the abstract interface:

    virtual CallbackPtr<boost::function<double (int32_t, double)> > get_addTwoNumbersOnClient();
    virtual void set_addTwoNumbersOnClient(CallbackPtr<boost::function<double (int32_t, double)> > callback);

A get accessor prefixed with `get_` and a set accessor prefixed with `set_` are generated. These are used to get and set the callback member object in the service. For the client, only the get accessor is used.

The calback member object is a RobotRaconteur::Callback used to set the callback function on the client, and get the callback proxy on the service.

An example using the callback client:

    // Assume "c" is a connected client object reference with callback "addTwoNumbersOnClient"

    using namespace RobotRaconteur;

    // Get the callback member object
    CallbackPtr<boost::function<double (int32_t, double)> > cb = c->get_addTwoNumbersOnClient();

    // Set the callback function
    c->SetClientFunction([](int32_t a, double b)
        {
            std::cout << "Service invoke callback with parameters " << a << "and" << b << std::endl;
            return (double)(a + b);
        }
    );

The RobotRaconteur::Callback object implementation does not support asynchronous operation.

### Wire Members {#cpp_client_wire}

Wire members provide a "most recent" values. They are typically used to communicate a real-time signal, such as a robot joint angle. See RobotRaconteur::Wire for a discussion of wires.

An example wire definition:

    wire double[2] currentposition

Results in the following functions being generated in the abstract interface:

    virtual WirePtr<RRArrayPtr<double>> get_currentposition();
    virtual void set_currentposition(WirePtr<RRArrayPtr<double>> wire);

A get accessor prefixed with `get_` and a set accessor prefixed with `set_` are generated. These are used to get and set the wire member object in the service. For the client, only the get accessor is used.

The `get_` accessor is used to retrieve the wire so it can be used. An example of using a wire client in streaming operation:

    // Assume "c" is a connected client object reference with wire "currentposition"

    using namespace RobotRaconteur;
    WirePtr<RRArrayPtr<double>> currentposition = c->currentposition();

    // Connect a WireConnection to receive streaming updates
    WireConnectionPtr<RRArrayPtr<double>> currentposition_cn = currentposition->Connect();
    double data[] = {1.23, 4.56};
    currentposition_cn->SetOutValue(AttachRRArrayCopy(data,2));
    currentposition_cn->WaitInValueValid(100);
    RRArrayPtr<double> in_value = currentposition_cn->GetInValue();
    std::cout << "Got in_value len: " << in_value->size() << std::endl;

    // Get the TimeSpec of the current InValue
    TimeSpec in_value_ts = currentposition_cn->GetLastValueReceivedTime();

Wire function `GetInValue()`, `SetOutValue()`, and `GetLastValueReceivedTime()` are inherently asynchronous, since they are intended to stream real-time data. In purely asynchronous code, `WaitInValueValid()` cannot be used. `TryGetInValue()` should be used instead to poll if a value is available.. Asynchronous code should also use `AsyncConnect()` instead of `Connect()` to connect the wire.

The above example uses a connected wire for streaming data. Sometimes the client only needs to read the `InValue` or set the `OutValue` instantaneously, not requiring a streaming connection. The "peek" and "poke" functions are provided for this purpose. They work like property "get" and "set", sending a request and receiving a response instead of passively sending packets periodically. See RobotRaconteur::Wire for a discussion on peek and poke.

An example of using peek and poke:

    // Assume "c" is a connected client object reference with wire "currentposition"

    using namespace RobotRaconteur;
    WirePtr<RRArrayPtr<double>> currentposition = c->currentposition();

    // Connect a WireConnection to receive streaming updates
    double data[] = {1.23, 4.56};
    currentposition_cn->PokeOutValue(AttachRRArrayCopy(data,2));
    TimeSpec in_value_ts;
    RRArrayPtr<double> in_value = currentposition_cn->PeekInValue(in_value_ts);
    std::cout << "Got in_value len: " << in_value->size() << std::endl;

The above example uses the synchronous functions `PeekInValue()` and `PokeOutValue()`. Asynchronous versions of these functions are also available. See RobotRaconteur::Wire.

Wires may be declared `readonly` or `writeonly`. Wires declared `readonly` wires may only use InValue on the client side. Wires declared `writeonly` may only use OutValue on the client side.

### Memory Members {#cpp_client_memory}

Memories are used to read and write a memory segment on the service. Memories may be numeric arrays, numeric multidimarrays, pod arrays, pod multidimarrays, namedarray arrays, or namedarray multidimarrays. The following table shows which memory class is used for each value and array type:

| Type | C++ Memory Class |
|---   | ---              |
| numeric array | RobotRaconteur::ArrayMemory |
| numeric multidimarray | RobotRaconteur::MultiDimArrayMemory |
| pod array | RobotRaconteur::PodArrayMemory |
| pod multidimarray | RobotRaconteur::PodMultiDimArrayMemory |
| namedarray array | RobotRaconteur::NamedArrayMemory |
| namedarray multidimarray | RobotRaconteur::NamedMultiDimArrayMemory |

All of the above C++ classes take a template of the scalar type used by the memory. See each individual class for more information.

A numeric array memory client and a numeric multidimarray memory client will be used as examples. Pod and namedarray memories are identical, except for the memory class and the value types being utilized.

Example array memory definition:

    memory double[] datahistory


Results in a single function being generated in the abstract interface:

    virtual ArrayMemoryPtr<double> get_datahistory();

The accessor function name is the member name prefixed with `get_`. On the client, this returns the array memory client. This accessor never blocks.

An example of using the array memory client:

    // Assume "c" is a connected client object reference with memory "datahistory"

    ArrayMemoryPtr<double> datahistory = c->get_datahistory();

    // Get the length of the memory
    uint64_t datahistory_len = datahistory->Length();

    // Read a segment of the memory into read_buf
    RRArrayPtr<double> read_buf = AllocateRRArray<double>(100);
    datahistory->Read(10, read_buf, 0, 100);

    // Write a portion of write_buf to segment of memory
    RRArrayPtr<double> write_buf = AllocateRRArray<double>(100);
    // TODO: fill write_buf with data
    datahistory->Write(5, write_buf, 15, 20);

Example array memory definition:

    memory double[*] datahistory2


Results in a single function being generated in the abstract interface:

    virtual MultiDimArrayMemoryPtr<double> get_datahistory2();

An example of using the array memory client:

    // Assume "c" is a connected client object reference with memory "datahistory2"

    MultiDimArrayMemoryPtr<double> datahistory2 = c->get_datahistory2();

    // Get the length of the memory
    std::vector<uint64_t> datahistory2_dims = datahistory2->Dimensions();

    // Read a segment of the memory into read_buf
    RRMultiDimArrayPtr<double> read_buf = AllocateEmptyRRMultiDimArray<double>({10,10});
    datahistory->Read({20,5}, read_buf, {0,0}, {10,10});

    // Write a portion of write_buf to segment of memory
    RRMultiDimArrayPtr<double> write_buf = AllocateEmptyRRMultiDimArray<double>({10,10});
    // TODO: fill write_buf with data
    datahistory->Write({5,10}, write_buf, {0,0}, {10,10});

The array memory clients do not support asynchronous operations.

It is recommended that clients acquire a monitor lock before memory operations. See \ref cpp_client_monitor_locks.

## Object Locking {#cpp_client_object_locking}

Robot Raconteur clients can request user, client, and monitor locks. These different lock types are discussed in \ref locking. These locks are activated and released using functions in RobotRaconteur::RobotRaconteurNode.

Locking normally requires the user to be authenticated, and for the user to have locking privileges.

### User Locks {#cpp_client_user_locks}

Users locks are requested using the RobotRaconteur::RobotRaconteurNode::RequestObjectLock() function with the `RobotRaconteurObjectLockFlags_USER_LOCK` flag specified. RobotRaconteur::ObjectLockedException will be thrown if the object is already locked. The lock is released using RobotRaconteur::RobotRaconteurNode::ReleaseObjectLock(). An example of user locks:

    // Assume "c" is a connected client object reference

    RobotRaconteurNode::s()->RequestObjectLock(c, RobotRaconteurObjectLockFlags_USER_LOCK);

    // If successful, the object is now locked for any session owned by the current user

    // When done with the lock, release it.

    RobotRaconteurNode::s()->ReleaseObjectLock(c);

Asynchronous versions of the lock and unlock functions are available. See RobotRaconteur::RobotRaconteurNode::AsyncRequestObjectLock() and RobotRaconteur::RobotRaconteurNode::AsyncReleaseObjectLock().

### Client Locks {#cpp_client_client_locks}

Client locks are requested using the RobotRaconteur::RobotRaconteurNode::RequestObjectLock() function with the `RobotRaconteurObjectLockFlags_CLIENT_LOCK` flag specified. RobotRaconteur::ObjectLockedException will be thrown if the object is already locked. The lock is released using RobotRaconteur::RobotRaconteurNode::ReleaseObjectLock(). An example of user locks:

    using namespace RobotRaconteur;

    // Assume "c" is a connected client object reference

    RobotRaconteurNode::s()->RequestObjectLock(c, RobotRaconteurObjectLockFlags_CLIENT_LOCK);

    // If successful, the object is now locked, only allowing the current session to use the object

    // When done with the lock, release it.

    RobotRaconteurNode::s()->ReleaseObjectLock(c);

Asynchronous versions of the lock and unlock functions are available. See RobotRaconteur::RobotRaconteurNode::AsyncRequestObjectLock() and RobotRaconteur::RobotRaconteurNode::AsyncReleaseObjectLock().

### Monitor Locks {#cpp_client_monitor_locks}

Monitor locks provide a single-threaded lock on the service object. There is no asynchronous version since it is inherently a threaded concept. Monitor locks are created using the RobotRaconteur::RobotRaconteurNode::MonitorEnter() function, and released using the RobotRaconteurNode::MonitorExit() function. A convenience scoped lock fence is available, RobotRaconteur::RobotRaconteurNode::ScopedMonitorLock. Its use is recommended. An example:

    using namespace RobotRaconteur;

    // Assume "c" is a connected client object reference

    {
        RobotRaconteurNode::ScopedMonitorLock monitor_lock(c,1000);

        // If successful, the object is now monitor locked.

    }

    // Lock is released when monitor_lock is destroyed