1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
nlrob <-
function (formula, data, start, weights = NULL, na.action = na.fail,
psi = psi.huber, test.vec = c("resid", "coef", "w"),
maxit = 20, acc = 1e-06, algorithm = "default",
control = nls.control(), trace = FALSE, ...)
{
## Purpose:
## Robust fitting of nonlinear regression models. The fitting is
## done by iterated reweighted least squares (IWLS) as in rlm() of
## the package MASS. In addition, see also 'nls'.
##
## --> see the help file, ?nlrob (or ../man/nlrob.Rd in the source)
## -------------------------------------------------------------------------
##- some checks
mf <- match.call() # << and more as in nls() [FIXME or drop]
formula <- as.formula(formula)
if (length(formula) != 3)
stop("'formula' should be a formula of the type 'y ~ f(x, alpha)'")
test.vec <- match.arg(test.vec)
varNames <- all.vars(formula)
dataName <- substitute(data)
data <- as.data.frame(data)
## FIXME: nls() allows a missing 'start'; we don't :
if (length(pnames <- names(start)) != length(start))
stop("'start' must be fully named (list or numeric vector)")
if (!((is.list(start) && all(sapply(start, is.numeric))) ||
(is.vector(start) && is.numeric(start)))
|| any(is.na(match(pnames, varNames))))
stop("'start' must be a list or numeric vector named with parameters in 'formula'")
if ("w" %in% varNames || "w" %in% pnames || "w" %in% names(data))
stop("Do not use 'w' as a variable name or as a parameter name")
if (!is.null(weights)) {
if (length(weights) != nrow(data))
stop("'length(weights)' must equal the number of observations")
if (any(weights < 0) || any(is.na(weights)))
stop("'weights' must be nonnegative and not contain NAs")
}
## if (any(is.na(data)) & options("na.action")$na.action == "na.omit")
## stop("if NAs are present, use 'na.exclude' to preserve the residuals length")
irls.delta <- function(old, new) sqrt(sum((old - new)^2, na.rm = TRUE)/
max(1e-20, sum(old^2, na.rm = TRUE)))
##- initialize testvec and update formula with robust weights
coef <- start
fit <- eval(formula[[3]], c(as.list(data), start))
y <- eval(formula[[2]], as.list(data))
resid <- y - fit
w <- rep(1, nrow(data))
if (!is.null(weights))
w <- w * weights
## The following "put everything on the right in order to use weights"
## is only necessary for R versions <= 2.2.1 (FIXME eventually)
oform <- formula
formula <- as.formula(substitute(~(LHS-RHS) * w, list(LHS = formula[[2]],
RHS = formula[[3]])))
##- robust loop (IWLS)
converged <- FALSE
status <- "converged"
method.exit <- FALSE
for (iiter in 1:maxit) {
if (trace)
cat("robust iteration", iiter, "\n")
previous <- get(test.vec)
Scale <- median(abs(resid), na.rm = TRUE)/0.6745
if (Scale == 0) {
convi <- 0
method.exit <- TRUE
warning(status <- "could not compute scale of residuals")
## FIXME : rather use a "better" Scale in this case, e.g.,
## ----- Scale <- min(abs(resid)[resid != 0])
}
else {
w <- psi(resid/Scale, ...)
if (!is.null(weights))
w <- w * weights
data$w <- sqrt(w)
out <- nls(formula, data = data, start = start, algorithm = algorithm,
trace = trace, na.action = na.action, control = control)
## same sequence as in start! Ok for test.vec:
coef <- coefficients(out)
start <- coef
resid <- -residuals(out)/sqrt(w) ## == - (y - f(x))*sqrt(w)
convi <- irls.delta(previous, get(test.vec))
}
converged <- convi <= acc
if (converged)
break
}
if(!converged && !method.exit)
warning(status <- paste("failed to converge in", maxit, "steps"))
if(!is.null(weights)) {
tmp <- weights != 0
w[tmp] <- w[tmp]/weights[tmp]
}
out <- list(m = out$m, call = match.call(), formula = oform, new.formula = formula,
coefficients = coef, residuals = resid,
fitted.values = y - out$residuals,
Scale = Scale, w = w, status = status, psi = psi,
data = dataName,
dataClasses = attr(attr(mf, "terms"), "dataClasses"))
##MM: Where would this "label" really make sense?
##MM: attr(out$fitted.values, "label") <- "Fitted values"
##- names(out$residuals) <- rownames(data)
##- names(out$fitted.values) <- rownames(data)
class(out) <- c("nlrob", "nls")
out
}
fitted.nlrob <- function (object, ...)
{
val <- as.vector(object$fitted.values)
if (!is.null(object$na.action))
val <- napredict(object$na.action, val)
##MM: attr(val, "label") <- "Fitted values"
val
}
## formula() works "by default"
predict.nlrob <- function (object, newdata, ...)
{
if (missing(newdata))
return(as.vector(fitted(object)))
if (!is.null(cl <- object$dataClasses))
.checkMFClasses(cl, newdata)
eval(object$formula[[3]], c(as.list(newdata), coef(object)))
}
print.nlrob <- function (x, ...)
{
cat("Robustly fitted nonlinear regression model\n")
cat(" model: ", deparse(formula(x)), "\n")
cat(" data: ", deparse(x$data), "\n")
print(coef(x), ...)
cat(" status: ", x$status, "\n")
invisible(x)
}
residuals.nlrob <- function (object, ...)
{
val <- as.vector(object$residuals)
if (!is.null(object$na.action))
val <- naresid(object$na.action, val)
##MM: attr(val, "label") <- "Residuals"
val
}
### FIXME !
summary.nlrob <- function (object, ...)
{
cat(" summary.nlrob() -- not yet implemented.\n\n")
## that may be a good start:
nlsSum <- stats:::summary.nls(object, ...)
## but we need to change the call;
## additionally show robustness weights, and --- most importantly ---
## "Fix the inference" (z-values / sandwich-STD.ERR. ?)
object
}
|