1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
|
#### Utility functions for testing covMCD()
#### -------------------------------------- ../tests/tmcd.R
repMCD <- function(x, nrep = 1, method = c("FASTMCD","MASS"))
{
stopifnot(length(nrep) == 1, nrep >= 1)
method <- match.arg(method)
if(method == "MASS") {
if(paste(R.version$major, R.version$minor, sep=".") < 2.3)
cov.rob <- MASS::cov.rob
for(i in 1:nrep) MASS::cov.mcd(x)
}
else for(i in 1:nrep) covMcd(x)
}
doMCDdata <- function(nrep = 1, time = nrep >= 3, short = time, full = !short,
method = c("FASTMCD", "MASS"))
{
##@bdescr
## Test the function covMcd() on the literature datasets:
##
## Call covMcd() for "all" regression datasets available in robustbase
## and print:
## - execution time (if time)
## - objective function
## - best subsample found (if not short)
## - outliers identified (with cutoff 0.975) (if not short)
## - estimated center and covariance matrix (if full)
##
##@edescr
##
##@in nrep : [integer] number of repetitions to use for estimating the
## (average) execution time
##@in time : [boolean] whether to evaluate the execution time
##@in short : [boolean] whether to do short output (i.e. only the
## objective function value). If short == FALSE,
## the best subsample and the identified outliers are
## printed. See also the parameter full below
##@in full : [boolean] whether to print the estimated center and covariance matrix
##@in method : [character] select a method: one of (FASTMCD, MASS)
domcd <- function(x, xname, nrep = 1)
{
n <- dim(x)[1]
p <- dim(x)[2]
if(method == "MASS") {
mcd <- MASS::cov.mcd(x)
quan <- as.integer(floor((n + p + 1)/2)) #default: floor((n+p+1)/2)
}
else {
mcd <- covMcd(x) # trace = FALSE
quan <- as.integer(mcd$quan)
}
crit <- if(method == "MASS") mcd$crit else log(mcd$crit)
xres <- sprintf("%*s %3d %3d %3d %12.6f", lname, xname, n, p, quan, crit)
if(time) {
xtime <- system.time(repMCD(x, nrep, method))[1]/nrep
xres <- sprintf("%s %10.1f", xres, 1000 * xtime)
}
cat(xres, "\n")
if(!short) {
cat("Best subsample: \n")
print(mcd$best)
ibad <- which(mcd$mcd.wt == 0)
names(ibad) <- NULL
nbad <- length(ibad)
cat("Outliers: ",nbad,"\n")
if(nbad > 0)
print(ibad)
if(full) {
cat("-------------\n")
print(mcd)
}
cat("--------------------------------------------------------\n")
}
}
lname <- 20
method <- match.arg(method)
if(method == "MASS" &&
paste(R.version$major, R.version$minor, sep=".") < 2.3)
cov.rob <- MASS::cov.rob
data(heart)
data(phosphor)
data(starsCYG)
data(stackloss)
data(coleman)
data(salinity)
data(wood)
data(hbk)
data(Animals, package = "MASS")
brain <- Animals[c(1:24, 26:25, 27:28),]
data(milk)
data(bushfire)
## data(x1000)
## data(x5000)
tmp <- sys.call()
cat("\nCall: ", deparse(substitute(tmp)),"\n")
cat("Data Set n p Half LOG(obj) Time [ms]\n")
cat("========================================================\n")
domcd(heart[, 1:2], data(heart), nrep)
domcd(data.matrix(subset(phosphor, select = -plant)),
data(phosphor), nrep)
domcd(starsCYG, data(starsCYG), nrep)
domcd(stack.x, data(stackloss), nrep)
domcd(data.matrix(subset(coleman, select = -Y)), data(coleman), nrep)
domcd(data.matrix(subset(salinity, select = -Y)), data(salinity), nrep)
domcd(data.matrix(subset(wood, select = -y)), data(wood), nrep)
domcd(data.matrix(subset(hbk, select = -Y)), data(hbk), nrep)
domcd(brain, "Animals", nrep)
domcd(milk, data(milk), nrep)
domcd(bushfire, data(bushfire), nrep)
cat("========================================================\n")
## domcd(x1000$X,data(x1000), nrep)
## domcd(x5000$X,data(x5000), nrep)
}
if(FALSE){
data(mortality, package = "riv")
mm <- as.data.frame(lapply(mortality, signif, 3))
for(j in c(1,2,6,7))
mm[,j] <- mm[,j] * 10
mm[,5] <- mm[,5] * 1000
mm[,8] <- mm[,8] / 100
mort3 <- mm
dput(mort3)
}
mort3 <-
data.frame(MO70 = c(140, 101, 86, 102, 115, 121, 118, 76.6,
131, 112, 111, 112, 117, 118, 123, 122, 81.7, 108, 111, 109,
92.5, 83.9, 93.8, 135, 124, 126, 122, 120, 127, 115, 156, 95.1,
127, 129, 116, 82.3, 115, 106, 134, 94.9, 119, 111, 131, 85.6,
135, 126, 141, 152, 137, 151, 93.6, 84.2, 78, 50.2, 81.3, 112,
80.1, 125, 120, 143),
MAGE = c(297, 277, 275, 268, 296, 327, 314, 258, 342, 278, 278,
313, 284, 272, 296, 277, 271, 296, 286, 250, 280, 270, 246, 301,
279, 287, 293, 271, 291, 295, 314, 267, 275, 307, 259, 251, 324,
285, 288, 254, 278, 287, 316, 287, 326, 309, 334, 369, 321, 311,
261, 272, 260, 244, 248, 277, 240, 295, 319, 346),
CI68 = c(137, 137, 129, 129, 151, 157, 157, 157, 157, 202, 202, 202,
138, 160, 190, 191, 191, 191, 159, 159, 146, 146, 203, 203, 182, 166,
203, 203, 167, 167, 165, 153, 149, 149, 149, 157, 152, 183, 183, 183,
183, 183, 183, 111, 171, 148, 148, 148, 192, 160, 160, 172, 172,
172, 172, 101, 173, 173, 144, 181),
MDOC = c(142, 80.4, 148, 167, 230, 187, 240, 149, 240, 195, 327,
377, 203, 160, 161, 68.7, 141, 120, 176, 105, 128, 112, 98.9, 160,
209, 200, 153, 126, 157, 157, 145, 160, 158, 102, 195, 188, 250,
143, 157, 186, 114, 129, 129, 143, 186, 207, 144, 112, 157, 121,
168, 155, 144, 144, 120, 194, 93.6, 231, 185, 89.7),
DENS = c(37, 37, 27, 32, 17, 13, 23, 19, 27, 29, 15, 15, 48, 34,
26, 47, 17, 10, 10, 18, 11, 13, 26, 19, 55, 17, 16, 7, 10, 17,
44, 13, 18, 26, 40, 22, 29, 7, 28, 10, 15, 1, 11, 10, 8, 13, 13,
6, 10, 26, 49, 28, 32, 18, 62, 15, 21, 18, 10, 12),
NONW = c(4.22, 3.36, 0.67, 0.52, 2.51, 0.82, 4.07, 1.11,
2.86, 2.92, 2.74, 1.05, 7.23, 5.16, 3.44, 2.84, 1.84,
1.47, 0.62, 0.03, 0.96, 1.07, 1.74, 2.41, 0.45, 4.7, 4.45,
1.2, 0.64, 2.28, 4.13, 1.06, 4.02, 2.22, 5.6, 0.43, 2.34,
1.78, 2.81, 1.9, 3.09, 1.43, 2.58, 1.34, 0.78, 3.44, 2.07,
0.68, 1, 3.6, 3.92, 2.58, 2.66, 0.05, 0.86, 0.32, 3.02,
4.24, 1.26, 1.08),
EDUC = c(454, 516, 601, 631, 565, 620, 661, 653, 661, 591,
568, 499, 685, 534, 539, 536, 560, 542, 680, 546, 648,
632, 601, 469, 458, 446, 521, 540, 661, 601, 480, 627,
506, 363, 551, 662, 518, 556, 484, 607, 562, 517, 521,
582, 629, 506, 534, 433, 459, 476, 492, 548, 517, 517,
468, 685, 483, 471, 678, 528),
IN69 = c(86.9, 99.3, 113, 99.2, 104, 118, 113, 117, 125,
100, 104, 115, 122, 107, 135, 101, 123, 114, 114, 113,
108, 109, 100, 99.8, 102, 100, 110, 112, 111, 113, 92.7,
116, 86.3, 103, 86.4, 109, 116, 112, 104, 108, 103, 116,
99.3, 116, 114, 104, 105, 97, 102, 83.4, 101, 125, 117,
118, 90.3, 108, 92.4, 106, 126, 109))
|