1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
|
\name{lmrob..M..fit}
\alias{lmrob..M..fit}
\title{Compute M-estimators of regression}
\description{
This function performs RWLS iterations to find an
M-estimator of regression with Tukey's bisquare psi-function. When
started from an S-estimated \code{beta.initial}, this results in an
MM-estimator.
}
\usage{
lmrob..M..fit(x, y, beta.initial, scale, c.psi, control)
}
\arguments{
\item{x}{design matrix (\eqn{n \times p}{n x p}) typically including a
column of \code{1}s for the intercept.}
\item{y}{numeric response vector (of length \eqn{n}).}
\item{beta.initial}{numeric vector (of length \eqn{p}) of initial
estimate. Usually the result of an S-regression estimator.}
\item{scale}{robust residual scale estimate. Usually
an S-scale estimator.}
\item{c.psi}{the tuning constant of the \eqn{\psi /}{} psi-function of
the M-estimator used.}
\item{control}{list of control parameters, as returned
by \code{\link{lmrob.control}}. Currently, only the components
\code{c("max.it", "rel.tol","trace.lev")} are accessed.}
}
\details{
This function is used by \code{\link{lmrob.fit.MM}} %% and *fit.M() %% << TODO
and typically not to be used on its own.
}
\value{A list with the following elements:
\item{coef}{the M-estimator (or MM-estim.) of regression}
\item{control}{the \code{control} list input used}
\item{scale}{ The residual scale estimate}
\item{seed }{ The random number generator seed}
\item{converged}{ \code{TRUE} if the RWLS iterations converged,
\code{FALSE} otherwise}
}
\references{
Yohai, 1987
}
\seealso{
\code{\link{lmrob.fit.MM}}, \code{\link{lmrob}};
for M-estimators with more flexibility, e.g., choice of rho/psi:
\code{\link[MASS]{rlm}} from package \pkg{MASS}.
}
\author{Matias Salibian-Barrera and Martin Maechler}
\examples{
data(stackloss)
X <- model.matrix(stack.loss ~ . , data = stackloss)
y <- stack.loss
## Compute manual MM-estimate:
## 1) initial LTS:
m0 <- ltsReg(X[,-1], y)
## 2) M-estimate started from LTS:
m1 <- lmrob..M..fit(X, y, beta.initial = coef(m0),
scale = m0$scale, c.psi = 1.6,
control = lmrob.control())
cbind(m0$coef, m1$coef)
## the scale is kept fixed:
stopifnot(identical(unname(m0$scale), m1$scale))
## robustness weights: are
r.s <- with(m1, resid/scale) # scaled residuals
m1.wts <- robustbase:::tukeyPsi1(r.s, cc = 1.6) / r.s
summarizeRobWeights(m1.wts)
##--> outliers 1,3,4,13,21
which(m0$lts.wt == 0) # 1,3,4,21 but not 13
}
\keyword{robust}
\keyword{regression}
|