File: tmcd.Rout.save

package info (click to toggle)
robustbase 0.5-0-1-1
  • links: PTS
  • area: main
  • in suites: squeeze
  • size: 1,564 kB
  • ctags: 456
  • sloc: fortran: 2,524; ansic: 1,782; makefile: 1
file content (1119 lines) | stat: -rw-r--r-- 33,921 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119

R version 2.9.0 Under development (unstable) (2009-01-20 r47658)
Copyright (C) 2009 The R Foundation for Statistical Computing
ISBN 3-900051-07-0

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(robustbase)
> 
> source(system.file("test_MCD.R", package = "robustbase"))
> ##          ../inst/test_MCD.R
> 
> ## -- now do it:
> options(digits = 5)
> set.seed(101) # <<-- sub-sampling algorithm now based on R's RNG and seed
> doMCDdata()

Call:  doMCDdata() 
Data Set               n   p  Half   LOG(obj)  Time [ms]
========================================================
               heart  12   2   7     5.678742 
Best subsample: 
[1]  1  3  4  5  7  9 11
Outliers:  0 
-------------
Minimum Covariance Determinant (MCD) estimator.
Call:
covMcd(x = x)
-> Method:  Minimum Covariance Determinant Estimator. 

Log(Det.):  5.68 
Robust Estimate of Location:
height  weight  
  38.3    33.1  
Robust Estimate of Covariance:
        height  weight
height     157     303
weight     303     660
--------------------------------------------------------
            phosphor  18   2  10     6.878847 
Best subsample: 
 [1]  3  5  8  9 11 12 13 14 15 17
Outliers:  2 
[1] 1 6
-------------
Minimum Covariance Determinant (MCD) estimator.
Call:
covMcd(x = x)
-> Method:  Minimum Covariance Determinant Estimator. 

Log(Det.):  6.88 
Robust Estimate of Location:
  inorg  organic  
   13.4     38.8  
Robust Estimate of Covariance:
         inorg  organic
inorg      181      184
organic    184      256
--------------------------------------------------------
            starsCYG  47   2  25    -8.031215 
Best subsample: 
 [1]  1  2  4  6  8 10 12 13 16 24 25 26 28 32 33 37 38 39 40 41 42 43 44 45 46
Outliers:  6 
[1]  7 11 14 20 30 34
-------------
Minimum Covariance Determinant (MCD) estimator.
Call:
covMcd(x = x)
-> Method:  Minimum Covariance Determinant Estimator. 

Log(Det.):  -8.03 
Robust Estimate of Location:
   log.Te  log.light  
     4.41       4.95  
Robust Estimate of Covariance:
           log.Te  log.light
log.Te     0.0171     0.0511
log.light  0.0511     0.3555
--------------------------------------------------------
           stackloss  21   3  12     5.472581 
Best subsample: 
 [1]  4  5  6  7  8  9 10 11 12 13 14 20
Outliers:  9 
[1]  1  2  3 15 16 17 18 19 21
-------------
Minimum Covariance Determinant (MCD) estimator.
Call:
covMcd(x = x)
-> Method:  Minimum Covariance Determinant Estimator. 

Log(Det.):  5.47 
Robust Estimate of Location:
  Air.Flow  Water.Temp  Acid.Conc.  
      59.5        20.8        87.3  
Robust Estimate of Covariance:
            Air.Flow  Water.Temp  Acid.Conc.
Air.Flow        12.6        11.7        11.5
Water.Temp      11.7        18.5        12.3
Acid.Conc.      11.5        12.3        46.6
--------------------------------------------------------
             coleman  20   5  13     1.286808 
Best subsample: 
 [1]  2  3  4  5  7  8 12 13 14 16 17 19 20
Outliers:  7 
[1]  1  6  9 10 11 15 18
-------------
Minimum Covariance Determinant (MCD) estimator.
Call:
covMcd(x = x)
-> Method:  Minimum Covariance Determinant Estimator. 

Log(Det.):  1.29 
Robust Estimate of Location:
  salaryP   fatherWc    sstatus  teacherSc  motherLev  
     2.76      48.38       6.12      25.00       6.40  
Robust Estimate of Covariance:
           salaryP  fatherWc  sstatus  teacherSc  motherLev
salaryP      0.381      2.69   -0.400      0.228      0.113
fatherWc     2.685   1959.47  496.858     18.948     51.871
sstatus     -0.400    496.86  180.236      5.762     15.230
teacherSc    0.228     18.95    5.762      1.180      0.835
motherLev    0.113     51.87   15.230      0.835      1.567
--------------------------------------------------------
            salinity  28   3  16     1.326364 
Best subsample: 
 [1]  1  2  6  7  8 12 13 14 18 20 21 22 25 26 27 28
Outliers:  4 
[1]  5 16 23 24
-------------
Minimum Covariance Determinant (MCD) estimator.
Call:
covMcd(x = x)
-> Method:  Minimum Covariance Determinant Estimator. 

Log(Det.):  1.33 
Robust Estimate of Location:
   X1     X2     X3  
10.08   2.78  22.78  
Robust Estimate of Covariance:
       X1     X2     X3
X1  13.87   1.34  -4.24
X2   1.34   5.10  -1.92
X3  -4.24  -1.92   3.17
--------------------------------------------------------
                wood  20   5  13   -36.270094 
Best subsample: 
 [1]  1  2  3  5  9 10 12 13 14 15 17 18 20
Outliers:  7 
[1]  4  6  7  8 11 16 19
-------------
Minimum Covariance Determinant (MCD) estimator.
Call:
covMcd(x = x)
-> Method:  Minimum Covariance Determinant Estimator. 

Log(Det.):  -36.3 
Robust Estimate of Location:
   x1     x2     x3     x4     x5  
0.587  0.122  0.531  0.538  0.892  
Robust Estimate of Covariance:
          x1         x2        x3         x4         x5
x1   0.01507   2.83e-03   0.00474  -8.81e-04  -2.45e-03
x2   0.00283   7.29e-04   0.00191  -7.82e-05   3.55e-05
x3   0.00474   1.91e-03   0.00997  -1.31e-03   5.30e-04
x4  -0.00088  -7.82e-05  -0.00131   4.28e-03   2.75e-03
x5  -0.00245   3.55e-05   0.00053   2.75e-03   4.16e-03
--------------------------------------------------------
                 hbk  75   3  39    -1.047858 
Best subsample: 
 [1] 15 16 17 18 19 20 21 22 23 24 26 27 31 32 33 35 36 37 38 40 43 49 50 51 54
[26] 55 56 58 59 61 63 64 66 67 70 71 72 73 74
Outliers:  14 
 [1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14
-------------
Minimum Covariance Determinant (MCD) estimator.
Call:
covMcd(x = x)
-> Method:  Minimum Covariance Determinant Estimator. 

Log(Det.):  -1.05 
Robust Estimate of Location:
  X1    X2    X3  
1.54  1.78  1.69  
Robust Estimate of Covariance:
        X1      X2     X3
X1  1.6528  0.0741  0.171
X2  0.0741  1.6823  0.205
X3  0.1713  0.2055  1.562
--------------------------------------------------------
             Animals  28   2  15    14.555543 
Best subsample: 
 [1]  1  3  4  5 10 11 17 18 19 20 21 22 23 26 27
Outliers:  13 
 [1]  2  6  7  8  9 12 13 14 15 16 24 25 28
-------------
Minimum Covariance Determinant (MCD) estimator.
Call:
covMcd(x = x)
-> Method:  Minimum Covariance Determinant Estimator. 

Log(Det.):  14.6 
Robust Estimate of Location:
 body  brain  
 18.7   64.9  
Robust Estimate of Covariance:
       body  brain
body   2511   4258
brain  4258  15257
--------------------------------------------------------
                milk  86   8  47   -28.848323 
Best subsample: 
 [1]  5  7  8  9 10 21 22 24 26 30 31 32 33 34 35 36 39 45 46 51 53 54 55 56 57
[26] 58 59 60 61 62 63 64 65 66 67 68 69 71 72 76 78 79 81 82 83 84 86
Outliers:  20 
 [1]  1  2  3 11 12 13 14 15 16 17 18 20 27 41 44 47 70 74 75 77
-------------
Minimum Covariance Determinant (MCD) estimator.
Call:
covMcd(x = x)
-> Method:  Minimum Covariance Determinant Estimator. 

Log(Det.):  -28.8 
Robust Estimate of Location:
    X1      X2      X3      X4      X5      X6      X7      X8  
  1.03   35.89   33.08   26.14   25.12   25.05  123.17   14.38  
Robust Estimate of Covariance:
          X1        X2        X3        X4        X5        X6      X7
X1  5.16e-07  0.000141  0.000179  0.000175  0.000156  0.000135  0.0007
X2  1.41e-04  2.274487  0.283407  0.224349  0.123111  0.286851  2.0115
X3  1.79e-04  0.283407  1.338103  0.991617  0.977699  0.968312  0.8373
X4  1.75e-04  0.224349  0.991617  0.795728  0.760376  0.746050  0.6976
X5  1.56e-04  0.123111  0.977699  0.760376  0.806266  0.761894  0.6790
X6  1.35e-04  0.286851  0.968312  0.746050  0.761894  0.773555  0.7223
X7  7.00e-04  2.011544  0.837316  0.697578  0.678976  0.722292  4.7856
X8  1.68e-05  0.261205  0.227169  0.155399  0.129194  0.147308  0.4377
          X8
X1  1.68e-05
X2  2.61e-01
X3  2.27e-01
X4  1.55e-01
X5  1.29e-01
X6  1.47e-01
X7  4.38e-01
X8  1.86e-01
--------------------------------------------------------
            bushfire  38   5  22    18.135810 
Best subsample: 
 [1]  1  2  3  4  5  6 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Outliers:  16 
 [1]  7  8  9 10 11 12 29 30 31 32 33 34 35 36 37 38
-------------
Minimum Covariance Determinant (MCD) estimator.
Call:
covMcd(x = x)
-> Method:  Minimum Covariance Determinant Estimator. 

Log(Det.):  18.1 
Robust Estimate of Location:
 V1   V2   V3   V4   V5  
105  147  274  218  279  
Robust Estimate of Covariance:
       V1     V2     V3    V4    V5
V1    567    439  -2771  -624  -509
V2    439    387  -1843  -376  -318
V3  -2771  -1843  16367  4021  3196
V4   -624   -376   4021  1059   827
V5   -509   -318   3196   827   652
--------------------------------------------------------
========================================================
> ##                vvvv no timing for 'R CMD Rdiff' outputs
> doMCDdata(nrep = 12, time=FALSE)

Call:  doMCDdata(nrep = 12, time = FALSE) 
Data Set               n   p  Half   LOG(obj)  Time [ms]
========================================================
               heart  12   2   7     5.678742 
Best subsample: 
[1]  1  3  4  5  7  9 11
Outliers:  0 
-------------
Minimum Covariance Determinant (MCD) estimator.
Call:
covMcd(x = x)
-> Method:  Minimum Covariance Determinant Estimator. 

Log(Det.):  5.68 
Robust Estimate of Location:
height  weight  
  38.3    33.1  
Robust Estimate of Covariance:
        height  weight
height     157     303
weight     303     660
--------------------------------------------------------
            phosphor  18   2  10     6.878847 
Best subsample: 
 [1]  3  5  8  9 11 12 13 14 15 17
Outliers:  2 
[1] 1 6
-------------
Minimum Covariance Determinant (MCD) estimator.
Call:
covMcd(x = x)
-> Method:  Minimum Covariance Determinant Estimator. 

Log(Det.):  6.88 
Robust Estimate of Location:
  inorg  organic  
   13.4     38.8  
Robust Estimate of Covariance:
         inorg  organic
inorg      181      184
organic    184      256
--------------------------------------------------------
            starsCYG  47   2  25    -8.031215 
Best subsample: 
 [1]  1  2  4  6  8 10 12 13 16 24 25 26 28 32 33 37 38 39 40 41 42 43 44 45 46
Outliers:  6 
[1]  7 11 14 20 30 34
-------------
Minimum Covariance Determinant (MCD) estimator.
Call:
covMcd(x = x)
-> Method:  Minimum Covariance Determinant Estimator. 

Log(Det.):  -8.03 
Robust Estimate of Location:
   log.Te  log.light  
     4.41       4.95  
Robust Estimate of Covariance:
           log.Te  log.light
log.Te     0.0171     0.0511
log.light  0.0511     0.3555
--------------------------------------------------------
           stackloss  21   3  12     5.472581 
Best subsample: 
 [1]  4  5  6  7  8  9 10 11 12 13 14 20
Outliers:  9 
[1]  1  2  3 15 16 17 18 19 21
-------------
Minimum Covariance Determinant (MCD) estimator.
Call:
covMcd(x = x)
-> Method:  Minimum Covariance Determinant Estimator. 

Log(Det.):  5.47 
Robust Estimate of Location:
  Air.Flow  Water.Temp  Acid.Conc.  
      59.5        20.8        87.3  
Robust Estimate of Covariance:
            Air.Flow  Water.Temp  Acid.Conc.
Air.Flow        12.6        11.7        11.5
Water.Temp      11.7        18.5        12.3
Acid.Conc.      11.5        12.3        46.6
--------------------------------------------------------
             coleman  20   5  13     1.286808 
Best subsample: 
 [1]  2  3  4  5  7  8 12 13 14 16 17 19 20
Outliers:  7 
[1]  1  6  9 10 11 15 18
-------------
Minimum Covariance Determinant (MCD) estimator.
Call:
covMcd(x = x)
-> Method:  Minimum Covariance Determinant Estimator. 

Log(Det.):  1.29 
Robust Estimate of Location:
  salaryP   fatherWc    sstatus  teacherSc  motherLev  
     2.76      48.38       6.12      25.00       6.40  
Robust Estimate of Covariance:
           salaryP  fatherWc  sstatus  teacherSc  motherLev
salaryP      0.381      2.69   -0.400      0.228      0.113
fatherWc     2.685   1959.47  496.858     18.948     51.871
sstatus     -0.400    496.86  180.236      5.762     15.230
teacherSc    0.228     18.95    5.762      1.180      0.835
motherLev    0.113     51.87   15.230      0.835      1.567
--------------------------------------------------------
            salinity  28   3  16     1.326364 
Best subsample: 
 [1]  1  2  6  7  8 12 13 14 18 20 21 22 25 26 27 28
Outliers:  4 
[1]  5 16 23 24
-------------
Minimum Covariance Determinant (MCD) estimator.
Call:
covMcd(x = x)
-> Method:  Minimum Covariance Determinant Estimator. 

Log(Det.):  1.33 
Robust Estimate of Location:
   X1     X2     X3  
10.08   2.78  22.78  
Robust Estimate of Covariance:
       X1     X2     X3
X1  13.87   1.34  -4.24
X2   1.34   5.10  -1.92
X3  -4.24  -1.92   3.17
--------------------------------------------------------
                wood  20   5  13   -36.270094 
Best subsample: 
 [1]  1  2  3  5  9 10 12 13 14 15 17 18 20
Outliers:  7 
[1]  4  6  7  8 11 16 19
-------------
Minimum Covariance Determinant (MCD) estimator.
Call:
covMcd(x = x)
-> Method:  Minimum Covariance Determinant Estimator. 

Log(Det.):  -36.3 
Robust Estimate of Location:
   x1     x2     x3     x4     x5  
0.587  0.122  0.531  0.538  0.892  
Robust Estimate of Covariance:
          x1         x2        x3         x4         x5
x1   0.01507   2.83e-03   0.00474  -8.81e-04  -2.45e-03
x2   0.00283   7.29e-04   0.00191  -7.82e-05   3.55e-05
x3   0.00474   1.91e-03   0.00997  -1.31e-03   5.30e-04
x4  -0.00088  -7.82e-05  -0.00131   4.28e-03   2.75e-03
x5  -0.00245   3.55e-05   0.00053   2.75e-03   4.16e-03
--------------------------------------------------------
                 hbk  75   3  39    -1.047858 
Best subsample: 
 [1] 15 16 17 18 19 20 21 22 23 24 26 27 31 32 33 35 36 37 38 40 43 49 50 51 54
[26] 55 56 58 59 61 63 64 66 67 70 71 72 73 74
Outliers:  14 
 [1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14
-------------
Minimum Covariance Determinant (MCD) estimator.
Call:
covMcd(x = x)
-> Method:  Minimum Covariance Determinant Estimator. 

Log(Det.):  -1.05 
Robust Estimate of Location:
  X1    X2    X3  
1.54  1.78  1.69  
Robust Estimate of Covariance:
        X1      X2     X3
X1  1.6528  0.0741  0.171
X2  0.0741  1.6823  0.205
X3  0.1713  0.2055  1.562
--------------------------------------------------------
             Animals  28   2  15    14.555543 
Best subsample: 
 [1]  1  3  4  5 10 11 17 18 19 20 21 22 23 26 27
Outliers:  13 
 [1]  2  6  7  8  9 12 13 14 15 16 24 25 28
-------------
Minimum Covariance Determinant (MCD) estimator.
Call:
covMcd(x = x)
-> Method:  Minimum Covariance Determinant Estimator. 

Log(Det.):  14.6 
Robust Estimate of Location:
 body  brain  
 18.7   64.9  
Robust Estimate of Covariance:
       body  brain
body   2511   4258
brain  4258  15257
--------------------------------------------------------
                milk  86   8  47   -28.902301 
Best subsample: 
 [1]  6  7  8  9 10 19 21 22 23 24 25 26 30 33 34 35 36 37 38 39 45 46 53 54 55
[26] 56 57 58 59 60 61 62 63 64 65 66 67 69 71 72 76 78 79 80 81 82 83
Outliers:  19 
 [1]  1  2  3 11 12 13 14 15 16 17 18 27 41 44 47 70 74 75 77
-------------
Minimum Covariance Determinant (MCD) estimator.
Call:
covMcd(x = x)
-> Method:  Minimum Covariance Determinant Estimator. 

Log(Det.):  -28.9 
Robust Estimate of Location:
    X1      X2      X3      X4      X5      X6      X7      X8  
  1.03   35.97   33.13   26.17   25.15   25.08  123.18   14.39  
Robust Estimate of Covariance:
          X1        X2        X3        X4        X5        X6        X7
X1  6.21e-07  6.11e-05  0.000222  0.000220  0.000195  0.000181  0.000813
X2  6.11e-05  1.91e+00  0.305315  0.234515  0.151617  0.261667  2.081023
X3  2.22e-04  3.05e-01  1.524243  1.122585  1.092155  1.120191  0.884748
X4  2.20e-04  2.35e-01  1.122585  0.891433  0.844566  0.861078  0.727338
X5  1.95e-04  1.52e-01  1.092155  0.844566  0.878407  0.860894  0.709359
X6  1.81e-04  2.62e-01  1.120191  0.861078  0.860894  0.905852  0.729376
X7  8.13e-04  2.08e+00  0.884748  0.727338  0.709359  0.729376  5.130073
X8  8.02e-06  3.42e-01  0.261602  0.167884  0.146623  0.160590  0.506099
          X8
X1  8.02e-06
X2  3.42e-01
X3  2.62e-01
X4  1.68e-01
X5  1.47e-01
X6  1.61e-01
X7  5.06e-01
X8  2.04e-01
--------------------------------------------------------
            bushfire  38   5  22    18.135810 
Best subsample: 
 [1]  1  2  3  4  5  6 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Outliers:  16 
 [1]  7  8  9 10 11 12 29 30 31 32 33 34 35 36 37 38
-------------
Minimum Covariance Determinant (MCD) estimator.
Call:
covMcd(x = x)
-> Method:  Minimum Covariance Determinant Estimator. 

Log(Det.):  18.1 
Robust Estimate of Location:
 V1   V2   V3   V4   V5  
105  147  274  218  279  
Robust Estimate of Covariance:
       V1     V2     V3    V4    V5
V1    567    439  -2771  -624  -509
V2    439    387  -1843  -376  -318
V3  -2771  -1843  16367  4021  3196
V4   -624   -376   4021  1059   827
V5   -509   -318   3196   827   652
--------------------------------------------------------
========================================================
> doMCDdata(nrep = 12, time=FALSE, method = "MASS")

Call:  doMCDdata(nrep = 12, time = FALSE, method = "MASS") 
Data Set               n   p  Half   LOG(obj)  Time [ms]
========================================================
               heart  12   2   7     5.678742 
Best subsample: 
[1]  1  3  4  5  7  9 11
Outliers:  0 
-------------
$center
height weight 
40.358 38.125 

$cov
       height weight
height 142.46 298.91
weight 298.91 679.01

$msg
[1] "0 singular samples of size 3 out of 220"

$crit
[1] 5.6787

$best
[1]  1  3  4  5  7  9 11

$n.obs
[1] 12

--------------------------------------------------------
            phosphor  18   2  10     6.878847 
Best subsample: 
 [1]  3  5  8  9 11 12 13 14 15 17
Outliers:  0 
-------------
$center
  inorg organic 
 15.215  39.385 

$cov
         inorg organic
inorg    95.47  116.49
organic 116.49  171.76

$msg
[1] "1 singular samples of size 3 out of 816"

$crit
[1] 6.8788

$best
 [1]  3  5  8  9 11 12 13 14 15 17

$n.obs
[1] 18

--------------------------------------------------------
            starsCYG  47   2  25    -8.031215 
Best subsample: 
 [1]  1  2  4  6  8 10 12 13 16 24 25 26 28 32 33 37 38 39 40 41 42 43 44 45 46
[26] 47
Outliers:  0 
-------------
$center
   log.Te log.light 
   4.4127    4.9335 

$cov
            log.Te log.light
log.Te    0.011508  0.038513
log.light 0.038513  0.241013

$msg
[1] "9 singular samples of size 3 out of 1500"

$crit
[1] -8.0312

$best
 [1]  1  2  4  6  8 10 12 13 16 24 25 26 28 32 33 37 38 39 40 41 42 43 44 45 46
[26] 47

$n.obs
[1] 47

--------------------------------------------------------
           stackloss  21   3  12     5.472581 
Best subsample: 
 [1]  4  5  6  7  8  9 10 11 12 13 14 20
Outliers:  0 
-------------
$center
  Air.Flow Water.Temp Acid.Conc. 
    56.706     20.235     85.529 

$cov
           Air.Flow Water.Temp Acid.Conc.
Air.Flow    23.4706     7.5735    16.1029
Water.Temp   7.5735     6.3162     5.3676
Acid.Conc.  16.1029     5.3676    32.3897

$msg
[1] "90 singular samples of size 4 out of 2000"

$crit
[1] 5.4726

$best
 [1]  4  5  6  7  8  9 10 11 12 13 14 20

$n.obs
[1] 21

--------------------------------------------------------
             coleman  20   5  13     1.286808 
Best subsample: 
 [1]  2  3  4  5  7  8 12 13 14 16 17 19 20
Outliers:  0 
-------------
$center
  salaryP  fatherWc   sstatus teacherSc motherLev 
   2.8253   44.6267    4.7133   25.1240    6.3320 

$cov
           salaryP  fatherWc   sstatus teacherSc motherLev
salaryP    0.18916  -0.30888   0.14262   0.17971   0.02461
fatherWc  -0.30888 683.87325 196.89588   3.30523  17.29381
sstatus    0.14262 196.89588  85.94311   1.68507   5.58631
teacherSc  0.17971   3.30523   1.68507   0.51571   0.21891
motherLev  0.02461  17.29381   5.58631   0.21891   0.50172

$msg
[1] "0 singular samples of size 6 out of 3000"

$crit
[1] 1.2868

$best
 [1]  2  3  4  5  7  8 12 13 14 16 17 19 20

$n.obs
[1] 20

--------------------------------------------------------
            salinity  28   3  16     1.326364 
Best subsample: 
 [1]  1  2  6  7  8 12 13 14 18 20 21 22 25 26 27 28
Outliers:  0 
-------------
$center
     X1      X2      X3 
10.0826  2.7826 22.7777 

$cov
         X1       X2      X3
X1  9.14332  0.88241 -2.7916
X2  0.88241  3.35968 -1.2622
X3 -2.79160 -1.26222  2.0924

$msg
[1] "4 singular samples of size 4 out of 2000"

$crit
[1] 1.3264

$best
 [1]  1  2  6  7  8 12 13 14 18 20 21 22 25 26 27 28

$n.obs
[1] 28

--------------------------------------------------------
                wood  20   5  13   -36.270094 
Best subsample: 
 [1]  1  2  3  5  9 10 12 13 14 15 17 18 20
Outliers:  0 
-------------
$center
     x1      x2      x3      x4      x5 
0.57613 0.12294 0.53127 0.53760 0.88913 

$cov
            x1         x2          x3          x4          x5
x1  5.2757e-03 7.8749e-04  1.2965e-03 -2.0514e-05 -4.0002e-04
x2  7.8749e-04 2.2023e-04  5.4362e-04  2.3846e-05  2.7230e-05
x3  1.2965e-03 5.4362e-04  3.0435e-03 -7.0560e-04 -4.4395e-05
x4 -2.0514e-05 2.3846e-05 -7.0560e-04  2.1388e-03  1.3511e-03
x5 -4.0002e-04 2.7230e-05 -4.4395e-05  1.3511e-03  1.5946e-03

$msg
[1] "0 singular samples of size 6 out of 3000"

$crit
[1] -36.27

$best
 [1]  1  2  3  5  9 10 12 13 14 15 17 18 20

$n.obs
[1] 20

--------------------------------------------------------
                 hbk  75   3  39    -1.047858 
Best subsample: 
 [1] 15 16 17 18 19 20 21 22 23 24 26 27 31 32 33 35 36 37 38 40 43 49 50 51 54
[26] 55 56 58 59 61 63 64 66 67 70 71 72 73 74
Outliers:  0 
-------------
$center
    X1     X2     X3 
1.5583 1.8033 1.6600 

$cov
         X1       X2      X3
X1 1.124845 0.022175 0.15373
X2 0.022175 1.138972 0.18149
X3 0.153729 0.181492 1.04346

$msg
[1] "1 singular samples of size 4 out of 2000"

$crit
[1] -1.0479

$best
 [1] 15 16 17 18 19 20 21 22 23 24 26 27 31 32 33 35 36 37 38 40 43 49 50 51 54
[26] 55 56 58 59 61 63 64 66 67 70 71 72 73 74

$n.obs
[1] 75

--------------------------------------------------------
             Animals  28   2  15    14.555543 
Best subsample: 
 [1]  1  3  4  5 10 11 17 18 19 20 21 22 23 26 27
Outliers:  0 
-------------
$center
   body   brain 
 48.331 127.321 

$cov
        body   brain
body  4978.6  7801.4
brain 7801.4 21693.7

$msg
[1] "0 singular samples of size 3 out of 3276"

$crit
[1] 14.556

$best
 [1]  1  3  4  5 10 11 17 18 19 20 21 22 23 26 27

$n.obs
[1] 28

--------------------------------------------------------
                milk  86   8  47   -28.931843 
Best subsample: 
 [1]  5  7  8  9 10 22 23 24 26 30 31 32 33 34 35 37 38 39 45 46 49 51 53 54 55
[26] 56 57 58 59 60 61 63 64 65 66 67 68 69 71 72 76 78 79 81 83 84 86
Outliers:  0 
-------------
$center
      X1       X2       X3       X4       X5       X6       X7       X8 
  1.0302  35.7571  33.0540  26.1206  25.1000  25.0365 122.9397  14.3559 

$cov
           X1         X2         X3         X4         X5         X6         X7
X1 4.2168e-07 8.0438e-05 0.00016232 0.00015533 0.00013742 0.00012898 0.00056354
X2 8.0438e-05 1.4057e+00 0.19735023 0.14557604 0.09112903 0.17788018 1.15253456
X3 1.6232e-04 1.9735e-01 1.06155658 0.78306196 0.77129032 0.77961086 0.62201741
X4 1.5533e-04 1.4558e-01 0.78306196 0.62069636 0.59419355 0.59568612 0.50932924
X5 1.3742e-04 9.1129e-02 0.77129032 0.59419355 0.62419355 0.60209677 0.51435484
X6 1.2898e-04 1.7788e-01 0.77961086 0.59568612 0.60209677 0.62558116 0.51594726
X7 5.6354e-04 1.1525e+00 0.62201741 0.50932924 0.51435484 0.51594726 3.12630312
X8 3.1754e-06 1.0393e-01 0.15537148 0.10339299 0.08783871 0.09729826 0.19106964
           X8
X1 3.1754e-06
X2 1.0393e-01
X3 1.5537e-01
X4 1.0339e-01
X5 8.7839e-02
X6 9.7298e-02
X7 1.9107e-01
X8 1.0417e-01

$msg
[1] "40 singular samples of size 9 out of 3000"

$crit
[1] -28.932

$best
 [1]  5  7  8  9 10 22 23 24 26 30 31 32 33 34 35 37 38 39 45 46 49 51 53 54 55
[26] 56 57 58 59 60 61 63 64 65 66 67 68 69 71 72 76 78 79 81 83 84 86

$n.obs
[1] 86

--------------------------------------------------------
            bushfire  38   5  22    18.135810 
Best subsample: 
 [1]  1  2  3  4  5  6 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Outliers:  0 
-------------
$center
    V1     V2     V3     V4     V5 
109.38 148.23 250.96 212.38 274.50 

$cov
         V1       V2       V3       V4      V5
V1   361.69  270.748 -1549.42 -324.394 -270.24
V2   270.75  272.905  -624.23  -86.732  -74.12
V3 -1549.42 -624.231 12072.60 2940.415 2419.98
V4  -324.39  -86.732  2940.42  760.886  619.08
V5  -270.24  -74.120  2419.98  619.080  507.46

$msg
[1] "0 singular samples of size 6 out of 3000"

$crit
[1] 18.136

$best
 [1]  1  2  3  4  5  6 14 15 16 17 18 19 20 21 22 23 24 25 26 27

$n.obs
[1] 38

--------------------------------------------------------
========================================================
> 
> ###--- now the "close to singular" mahalanobis case:
> (c3 <- covMcd(mort3))
Minimum Covariance Determinant (MCD) estimator.
Call:
covMcd(x = mort3)
-> Method:  Minimum Covariance Determinant Estimator. 

Log(Det.):  37.6 
Robust Estimate of Location:
  MO70    MAGE    CI68    MDOC    DENS    NONW    EDUC    IN69  
112.62  287.63  164.63  153.01   19.54    2.21  557.37  107.18  
Robust Estimate of Covariance:
         MO70      MAGE     CI68     MDOC     DENS     NONW  EDUC     IN69
MO70   645.32   567.286   125.06   109.26    -5.63   13.150  -904  -133.69
MAGE   567.29   860.391    -2.96   284.95   -95.30   -0.193  -500     5.57
CI68   125.06    -2.955   799.93  -357.48   -46.46    7.476  -839     7.38
MDOC   109.26   284.954  -357.48  2126.21   -89.66    1.462   423   121.61
DENS    -5.63   -95.297   -46.46   -89.66   181.24   10.686  -375   -62.28
NONW    13.15    -0.193     7.48     1.46    10.69    2.534   -98    -9.62
EDUC  -903.51  -500.437  -838.81   423.16  -374.60  -98.010  6789   511.09
IN69  -133.69     5.571     7.38   121.61   -62.28   -9.615   511   133.70
> ## rescale variables:
> scaleV <- c(0.1, 0.1, 1, 1, .001, 0.1, 0.1, 100)
> mm <- data.matrix(mort3) * rep(scaleV, each = nrow(mort3))
> C3 <- covMcd(mm)
> stopifnot(C3$mcd.wt == c3$mcd.wt)
> try(## error: with "old default tolerance:
+   covMcd(mm, control= rrcov.control(tol = 1e-10))
+ )
Error in solve.default(cov, ...) : 
  system is computationally singular: reciprocal condition number = 4.85293e-11
> 
> cat('Time elapsed: ', proc.time(),'\n') # for ``statistical reasons''
Time elapsed:  2.314 0.088 2.449 0 0 
> 
> ## "large" examples using different algo branches {seg.fault in version 0.4-4}:
> set.seed(1)
> 
> n <- 600 ## - partitioning will be triggered
> X <- matrix(round(100*rnorm(n * 3)), n, 3)
> cX <- covMcd(X)
> cX
Minimum Covariance Determinant (MCD) estimator.
Call:
covMcd(x = X)
-> Method:  Minimum Covariance Determinant Estimator. 

Log(Det.):  25.1 
Robust Estimate of Location:
[1]   0.141  -6.083  -0.703
Robust Estimate of Covariance:
      [,1]   [,2]   [,3]
[1,]  9646   -114    389
[2,]  -114  11221    250
[3,]   389    250  11726
> n <- 2000 ## - nesting will be triggered
> X <- matrix(round(100*rnorm(n * 3)), n, 3)
> cX <- covMcd(X)
> cX
Minimum Covariance Determinant (MCD) estimator.
Call:
covMcd(x = X)
-> Method:  Minimum Covariance Determinant Estimator. 

Log(Det.):  24.9 
Robust Estimate of Location:
[1]   0.201   1.455  -2.296
Robust Estimate of Covariance:
          [,1]  [,2]     [,3]
[1,]  10083.87   225     7.31
[2,]    224.92  9885   237.96
[3,]      7.31   238  9862.80
> 
> cat('Time elapsed: ', proc.time(),'\n')
Time elapsed:  2.549 0.09 2.686 0 0 
> 
> 
> ## Now, some small sample cases:
> 
> ## maximal values:
> n. <- 10
> p. <-  8
> set.seed(44)
> (X. <- cbind(1:n., round(10*rt(n.,3)), round(10*rt(n.,2)),
+              matrix(round(10*rnorm(n. * (p.-3)), 1),  nrow = n., ncol = p.-3)))
      [,1] [,2] [,3]  [,4]  [,5]  [,6] [,7]  [,8]
 [1,]    1    8    0  -3.6   4.7   3.0 -7.7  -3.3
 [2,]    2  -24    3   5.7 -15.6  13.5 -8.9 -10.0
 [3,]    3   -1    0  17.0  -1.9  19.0 17.4  -5.8
 [4,]    4   -9    2   0.1  -6.0 -11.5 18.6  25.8
 [5,]    5   -6  -31   2.4  10.0   9.6  5.4  -4.8
 [6,]    6    6   -3 -12.3  -4.6  17.2 -4.6  15.2
 [7,]    7   22   16  -2.8  -2.2  -5.2 -2.2   5.6
 [8,]    8   23    5  -9.0 -10.4  -2.6 -5.7   2.0
 [9,]    9    1   -9   2.1  -5.6   4.1  2.8  -3.0
[10,]   10  -17   -2  -8.8  -7.8   6.5  4.2  17.7
> 
> ## 2 x 1 ---> Error
> r <- try(covMcd(X.[1:2, 2, drop=FALSE]), silent=TRUE)
> stopifnot(inherits(r, "try-error"),
+           grep("too small sample size", r) == 1)
> 
> ## 3 x 2 --- ditto
> r <- try(covMcd(X.[1:3, 2:3]), silent=TRUE)
> stopifnot(inherits(r, "try-error"),
+           grep("too small sample size", r) == 1)
> 
> ## 5 x 3  [ n < 2 p  ! ]  --- also works for MASS
> X <- X.[1:5, 1:3]
> set.seed(101)
> ## the finite-sample correction is definitely doubtful:
> (cc <- covMcd(X, use.correction = FALSE))
Minimum Covariance Determinant (MCD) estimator.
Call:
covMcd(x = X, use.correction = FALSE)
-> Method:  Minimum Covariance Determinant Estimator. 

Log(Det.):  4.30 
Robust Estimate of Location:
[1]   2.50  -6.50   1.25
Robust Estimate of Covariance:
        [,1]    [,2]     [,3]
[1,]   2.474   -6.93    0.742
[2,]  -6.928  273.67  -28.456
[3,]   0.742  -28.46    3.341
Warning message:
In covMcd(X, use.correction = FALSE) :
  n < 2 * p, i.e., possibly too small sample size
> str(cc) ## best = 2 3 4 5
List of 18
 $ method     : chr "Minimum Covariance Determinant Estimator."
 $ call       : language covMcd(x = X, use.correction = FALSE)
 $ cov        : num [1:3, 1:3] 2.474 -6.928 0.742 -6.928 273.675 ...
 $ center     : num [1:3] 2.5 -6.5 1.25
 $ n.obs      : int 5
 $ best       : int [1:4] 1 2 3 4
 $ alpha      : num 0.5
 $ quan       : num 4
 $ raw.cov    : num [1:3, 1:3] 2.474 -6.928 0.742 -6.928 273.675 ...
 $ raw.center : num [1:3] 2.5 -6.5 1.25
 $ raw.weights: num [1:5] 1 1 1 1 0
 $ crit       : num 73.3
 $ raw.mah    : num [1:5] 1.52 1.52 1.52 1.52 2724.44
 $ mah        : num [1:5] 1.52 1.52 1.52 1.52 2724.44
 $ mcd.wt     : num [1:5] 1 1 1 1 0
 $ X          : num [1:5, 1:3] 1 2 3 4 5 8 -24 -1 -9 -6 ...
  ..- attr(*, "dimnames")=List of 2
  .. ..$ : chr [1:5] "1" "2" "3" "4" ...
  .. ..$ : NULL
 $ raw.cnp2   : num [1:2] 1.48 1
 $ cnp2       : num [1:2] 1.48 1
 - attr(*, "class")= chr "mcd"
> mcc <- MASS::cov.mcd(X)
> stopifnot(cc$best == mcc$best,
+           all.equal(cc$center, mcc$center, tol = 1e-10),
+           all.equal(c(mcc$cov / cc$raw.cov), rep(0.673549282206, 3*3)))
> 
> ## p = 4 -- 6 x 4 & 7 x 4  [ n < 2 p  ! ]
> p <- 4
> n <- 7
> X <- X.[1:n, 1+(1:p)]
> stopifnot(dim(X) == c(n,p))
> (cc <- covMcd(X, use.correction = FALSE))
Minimum Covariance Determinant (MCD) estimator.
Call:
covMcd(x = X, use.correction = FALSE)
-> Method:  Minimum Covariance Determinant Estimator. 

Log(Det.):  15.6 
Robust Estimate of Location:
[1]   0.333   3.000   0.683  -4.267
Robust Estimate of Covariance:
       [,1]    [,2]     [,3]     [,4]
[1,]  319.0  61.163  -82.304  102.906
[2,]   61.2  57.565   -0.745   -0.874
[3,]  -82.3  -0.745  126.126  -15.035
[4,]  102.9  -0.874  -15.035   57.008
Warning message:
In covMcd(X, use.correction = FALSE) :
  n < 2 * p, i.e., possibly too small sample size
> str(cc) ## best = 1 2 4 5 6 7
List of 18
 $ method     : chr "Minimum Covariance Determinant Estimator."
 $ call       : language covMcd(x = X, use.correction = FALSE)
 $ cov        : num [1:4, 1:4] 319 61.2 -82.3 102.9 61.2 ...
 $ center     : num [1:4] 0.333 3 0.683 -4.267
 $ n.obs      : int 7
 $ best       : int [1:6] 1 2 3 4 6 7
 $ alpha      : num 0.5
 $ quan       : num 6
 $ raw.cov    : num [1:4, 1:4] 319 61.2 -82.3 102.9 61.2 ...
 $ raw.center : num [1:4] 0.333 3 0.683 -4.267
 $ raw.weights: num [1:7] 1 1 1 1 0 1 1
 $ crit       : num 6011409
 $ raw.mah    : num [1:7] 2.546 2.477 3.224 0.835 24.765 ...
 $ mah        : num [1:7] 2.546 2.477 3.224 0.835 24.765 ...
 $ mcd.wt     : num [1:7] 1 1 1 1 0 1 1
 $ X          : num [1:7, 1:4] 8 -24 -1 -9 -6 6 22 0 3 0 ...
  ..- attr(*, "dimnames")=List of 2
  .. ..$ : chr [1:7] "1" "2" "3" "4" ...
  .. ..$ : NULL
 $ raw.cnp2   : num [1:2] 1.28 1
 $ cnp2       : num [1:2] 1.28 1
 - attr(*, "class")= chr "mcd"
> mcc <- MASS::cov.mcd(X)
> stopifnot(cc$best == mcc$best,
+           all.equal(cc$center, mcc$center, tol = 1e-10),
+           all.equal(c(mcc$cov / cc$raw.cov), rep(0.7782486992881, p*p)))
> n <- 6
> X <- X[1:n,]
> (cc <- covMcd(X, use.correction = FALSE))
Minimum Covariance Determinant (MCD) estimator.
Call:
covMcd(x = X, use.correction = FALSE)
-> Method:  Minimum Covariance Determinant Estimator. 

Log(Det.):  7.67 
Robust Estimate of Location:
[1]  -4.00   0.40   1.38  -4.68
Robust Estimate of Covariance:
       [,1]    [,2]   [,3]   [,4]
[1,]  225.1  -33.21  -76.3  115.1
[2,]  -33.2    7.04   17.1  -11.8
[3,]  -76.3   17.08  158.1  -16.6
[4,]  115.1  -11.83  -16.6   72.0
Warning message:
In covMcd(X, use.correction = FALSE) :
  n < 2 * p, i.e., possibly too small sample size
> mcc <- MASS::cov.mcd(X)
> stopifnot(cc$best == mcc$best,
+           all.equal(cc$center, mcc$center, tol = 1e-10),
+           all.equal(c(mcc$cov / cc$raw.cov), rep(0.7528695976179, p*p)))
> 
> cat('Time elapsed: ', proc.time(),'\n') # for ``statistical reasons''
Time elapsed:  2.611 0.098 2.755 0 0 
> 
> ## nsamp = "exact" -- here for p=7
> coleman.x <- data.matrix(coleman[, 1:6])
> system.time(CcX <- covMcd(coleman.x, nsamp="exact")) # ~ 3 sec.
Warning in .fastmcd(x, h, nsamp, trace = as.integer(trace)) :
  Computing all 77520 subsets of size 7 out of 20
 This may take a very long time!

   user  system elapsed 
  1.747   0.000   1.746 
> stopifnot(all.equal(CcX$best,
+                     c(2, 5:9, 11,13, 14:16, 19:20), tol=0))
>