File: glmrob.R

package info (click to toggle)
robustbase 0.8-1-1-1
  • links: PTS
  • area: main
  • in suites: wheezy
  • size: 3,156 kB
  • sloc: fortran: 2,553; ansic: 2,419; makefile: 1
file content (259 lines) | stat: -rw-r--r-- 9,046 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
glmrob <-
function (formula, family, data, weights, subset,
	  na.action, start = NULL, offset, method = "Mqle",
	  weights.on.x = c("none", "hat", "robCov", "covMcd"), control = NULL,
	  model = TRUE, x = FALSE, y = TRUE, contrasts = NULL, trace = FALSE,
	  ...)
{
    call <- match.call()
    if (is.character(family))
	family <- get(family, mode = "function", envir = parent.frame())
    if (is.function(family))
	family <- family()
    fami <- family$family
    if(is.null(fami))
	stop(gettextf("'%s' is not a valid family (see ?family)",
		      as.character(call[["family"]])))

    if (!(fami %in% c("binomial", "poisson", "Gamma", "gaussian"))) {
	stop(gettextf("Robust GLM fitting not yet implemented for family %s",
			  fami))
    }
    if(is.null(control)) # -> use e.g., glmrobMqle.control()
	control <- get(paste("glmrob", method, ".control", sep = ""))(...)
    if (missing(data))
	data <- environment(formula)
    ##
    mf <- match.call(expand.dots = FALSE)
    m <- match(c("formula", "data", "subset", "weights", "na.action", "offset"),
	       names(mf), 0)
    mf <- mf[c(1, m)]
    mf$drop.unused.levels <- TRUE
    mf[[1]] <- as.name("model.frame")
    mf <- eval(mf, parent.frame())
    if(method == "model.frame") return(mf)
    mt <- attr(mf, "terms")
    Y <- model.response(mf, "any")# "numeric" or "factor"
    if (length(dim(Y)) == 1) {
	nm <- rownames(Y)
	dim(Y) <- NULL
	if (!is.null(nm))
	    names(Y) <- nm
    }
    X <- if (!is.empty.model(mt))
	model.matrix(mt, mf, contrasts) else matrix(, NROW(Y), 0)
    weights <- model.weights(mf)
    offset <- model.offset(mf)
    if (!is.null(weights) && any(weights < 0))
	stop("'weights' must be non-negative")
    if (!is.null(offset) && length(offset) != NROW(Y))
	stop(gettextf("Number of offsets is %d, should rather equal %d (number of observations)",
		      length(offset), NROW(Y)))
    weights.on.x <- match.arg(weights.on.x)
    if(!is.null(start) && !is.numeric(start)) {
	## initialization methods
	if(!is.character(start))
	    stop("'start' must be a numeric vector, NULL, or a character string")
	start <-
	    switch(start,
		   "lmrobMM" = {
		       if(!is.null(weights))
			   warnings("weights are not yet used in computing start estimate")
		       lmrob.fit.MM(X, family$linkinv(Y),
				    control=lmrob.control())$coefficients
		   },
		   stop("invalid 'start' string"))
    }
    fit <- switch(method,
		  "cubif" = ## FIXME: not yet implemented !
		  glmrobCubif(X = X, y = Y, weights = weights, start = start,
			      offset = offset, family = family,
			      weights.on.x = weights.on.x, control = control,
			      intercept = attr(mt, "intercept") > 0,trace=trace),
		  "Mqle" = ## --> ./glmrobMqle.R
		  glmrobMqle(X = X, y = Y, weights = weights, start = start,
			     offset = offset, family = family,
			     weights.on.x = weights.on.x, control = control,
			     intercept = attr(mt, "intercept") > 0, trace=trace),
		  stop("invalid 'method': ", method))
    ##-	    if (any(offset) && attr(mt, "intercept") > 0) {
    ##-		fit$null.deviance <- glm.fit(x = X[, "(Intercept)", drop = FALSE],
    ##-		    y = Y, weights = weights, offset = offset, family = family,
    ##-		    control = control, intercept = TRUE)$deviance
    ##-	    }
    fit$na.action <- attr(mf, "na.action")
    if (model)
	fit$model <- mf
    if (x)
	fit$x <- X
    if (!y) ## fit$y <- NULL
	warning("setting 'y = FALSE' has no longer any effect")
    fit <- c(fit,
	     list(call = call, formula = formula, terms = mt, data = data,
		  offset = offset, control = control, method = method,
		  prior.weights = if(is.null(weights)) rep.int(1, nrow(X))
		  else weights,
		  contrasts = attr(X, "contrasts"),
		  xlevels = .getXlevels(mt, mf)))
    class(fit) <- c("glmrob", "glm")
    fit
}


summary.glmrob <- function(object, correlation=FALSE, symbolic.cor=FALSE, ...)
{
    dispersion <- object$dispersion
    if(is.null(dispersion)) dispersion <- 1
    coefs <- object$coefficients
    aliased <- is.na(coefs)# needs care; also used in print method
    if(any(aliased))
	coefs <- coefs[!aliased]
    covmat <- object$cov
    s.err <- sqrt(diag(covmat))
    zvalue <- coefs/s.err
    pvalue <- 2 * pnorm(-abs(zvalue))
    coef.table <- cbind("Estimate" = coefs, "Std. Error" = s.err,
			"z-value" = zvalue, "Pr(>|z|)" = pvalue)

    ans <- c(object[c("call", "terms", "family", "iter", "control", "method",
		      "residuals", "fitted.values", "w.r", "w.x")],
	     ## MM: should rather keep more from 'object' ?
	     ##	    currently, cannot even print the asympt.efficiency!
	     list(deviance=NULL, df.residual=NULL, null.deviance=NULL,
		  df.null= NULL, df= NULL, ## (because of 0 weights; hmm,...)
		  aliased = aliased,
		  coefficients = coef.table, dispersion = dispersion,
		  cov.scaled = covmat))
    if (correlation) {
	ans$correlation <- cov2cor(covmat)
	ans$symbolic.cor <- symbolic.cor
    }
    class(ans) <- "summary.glmrob"
    return(ans)
}

## almost a copy of vcov.glm() [if that didn't have summmary.glm() explicitly]
vcov.glmrob <- function (object, ...)
{
    so <- summary(object, corr = FALSE, ...)
    ## so$dispersion * so$cov.unscaled
    ## chanced from cov.unscaled to cov.scaled
    so$cov.scaled
}


print.glmrob <- function (x, digits = max(3, getOption("digits") - 3), ...)
{
    cat("\nCall: ", deparse(x$call), "\n\n")
    if (length(coef(x))) {
	cat("Coefficients")
	if (is.character(co <- x$contrasts))
	    cat("  [contrasts: ", apply(cbind(names(co), co),
					1, paste, collapse = "="), "]")
	cat(":\n")
	print.default(format(x$coefficients, digits = digits),
		      print.gap = 2, quote = FALSE)
    }
    else cat("No coefficients\n\n")
    cat("\nNumber of observations:", length(x$residuals),
	"\nFitted by method ", sQuote(x$method), "\n")
    invisible(x)
}

print.summary.glmrob <-
    function (x, digits = max(3, getOption("digits") - 3),
	      symbolic.cor = x$symbolic.cor,
	      signif.stars = getOption("show.signif.stars"), ...)
{
    cat("\nCall: ", deparse(x$call), "\n\n")
    if (length(cf <- coef(x))) {
	if(nsingular <- sum(x$aliased)) # glm has   df[3] - df[1]
	    cat("\nCoefficients: (", nsingular,
		" not defined because of singularities)\n", sep = "")
	else cat("\nCoefficients:\n")
	printCoefmat(cf, digits = digits, signif.stars = signif.stars,
		     na.print = "NA", ...)

	summarizeRobWeights(x$w.r * x$w.x, digits = digits,
			    header = "Robustness weights w.r * w.x:", ...)
    }
    else cat("No coefficients\n\n")

    n <- length(x$residuals)
    cat("\nNumber of observations:", n,
	"\nFitted by method", sQuote(x$method)," (in", x$iter, "iterations)\n")

    cat("\n(Dispersion parameter for ", x$family$family,
	" family taken to be ", format(x$dispersion), ")\n\n",sep = "")
    if(any(!is.null(unlist(x[c("null.deviance", "deviance")]))))
	cat(apply(cbind(paste(format(c("Null", "Residual"), justify="right"),
			      "deviance:"),
			format(unlist(x[c("null.deviance", "deviance")]),
			       digits=max(5, digits + 1)), " on",
			format(unlist(x[c("df.null", "df.residual")])),
			" degrees of freedom\n"), 1, paste, collapse=" "),
	    "\n", sep = "")
    else
	cat("No deviance values available \n")
    correl <- x$correlation
    if (!is.null(correl)) {
	p <- NCOL(correl)
	if (p > 1) {
	    cat("\nCorrelation of Coefficients:\n")
	    if (isTRUE(symbolic.cor)) {
		print(symnum(correl, abbr.colnames=NULL))
	    }
	    else {
		correl <- format(round(correl, 2), nsmall=2, digits=digits)
		correl[!lower.tri(correl)] <- ""
		print(correl[-1, -p, drop=FALSE], quote=FALSE)
	    }
	}
    }

    printControl(x$control, digits = digits)

    cat("\n")
    invisible(x)
}

## Stems from a copy of residuals.glm() in
## ~/R/D/r-devel/R/src/library/stats/R/glm.R
residuals.glmrob <-
    function(object,
	     type = c("deviance", "pearson", "working", "response",
             "partial"),
	     ...)
{
    type <- match.arg(type)
    y <- object$y
    r <- object$residuals
    mu	<- object$fitted.values
    wts <- object$prior.weights # ok
    p <- length(object$coefficients)
    switch(type,
           deviance=, pearson=, response=
           if(is.null(y)) {
               mu.eta <- object$family$mu.eta
               eta <- object$linear.predictors
               ## we cannot use 'r <- ...$residuals' __ FIXME __
               stop("need non-robust working residuals for this model type")
               y <-  mu + r * mu.eta(eta)
           })
    res <- switch(type,
##		  deviance = if(object$df.residual > 0) {
		  deviance = if((nobs(object) - p) > 0) {
		      d.res <- sqrt(pmax((object$family$dev.resids)(y, mu, wts), 0))
		      ifelse(y > mu, d.res, -d.res)
		  } else rep.int(0, length(mu)),
		  pearson = (y-mu)*sqrt(wts)/sqrt(object$family$variance(mu)),
		  working = r,
		  response = y - mu,
		  partial = r
		  )
    if(!is.null(object$na.action))
        res <- naresid(object$na.action, res)
    if (type == "partial") ## need to avoid doing naresid() twice.
        res <- res+predict(object, type="terms")
    res
}