File: rrcov.control.Rd

package info (click to toggle)
robustbase 0.8-1-1-1
  • links: PTS
  • area: main
  • in suites: wheezy
  • size: 3,156 kB
  • sloc: fortran: 2,553; ansic: 2,419; makefile: 1
file content (68 lines) | stat: -rw-r--r-- 2,639 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
\name{rrcov.control}
\alias{rrcov.control}
%%% FIXME --- naming and more --------------
%%% -----
\title{Control object for the estimation parameters }
\description{
     Auxiliary function for passing the estimation options as parameters to the
     estimation functions.

     \bold{NOTE: The name  WILL change !!!!}
}
\usage{
rrcov.control(alpha = 1/2, nsamp = 500, nmini = 300,
              seed = NULL, tolSolve = 1e-14, trace = FALSE,
              use.correction = TRUE, adjust = FALSE)
}
\arguments{
  \item{alpha}{This parameter controls the size of the subsets over
    which the determinant is minimized, i.e., \code{alpha*n} observations
    are used for computing the determinant.  Allowed values are between 0.5
    and 1 and the default is 0.5. }
  \item{nsamp}{number of subsets used for initial estimates or \code{"best"}
    or \code{"exact"}. Default is \code{nsamp = 500}.
    If \code{nsamp="best"} exhaustive enumeration is done, as far as
    the number of trials do not exceed 5000. If \code{nsamp="exact"}
    exhaustive enumeration will be attempted however many samples
    are needed. In this case a warning message will be displayed
    saying that the computation can take a very long time. }
  \item{nmini}{for \code{\link{covMcd}}: For large \eqn{n}, the algorithm
    splits the data into maximally \eqn{k_{\mathrm{rep}} = 5}{krep = 5}
    subsets of size \code{nmini}.}%%- more details  see --- ./covMcd.Rd
  \item{seed}{initial seed for R's random number generator; see
    \code{\link{.Random.seed}} and the description of the \code{seed}
    argument in \code{\link{lmrob.control}}.}
  \item{tolSolve}{numeric tolerance to be used for inversion
    (\code{\link{solve}}) of the covariance matrix in
    \code{\link{mahalanobis}}.}
  \item{trace}{whether to print intermediate results.  Default is
    \code{trace = FALSE}}
  \item{use.correction}{whether to use finite sample correction factors.
    Defaults to \code{TRUE}.}
  \item{adjust}{whether to perform intercept adjustment at each
    step.  Because this can be quite time consuming, the default is
    \code{adjust = FALSE}.}
}
\details{
  For details about the estimation options see the corresponding
  estimation functions.
}
\value{
  A list with components, as the parameters passed  by the invocation
}
\author{Valentin Todorov}
% \references{
% }

\examples{
data(Animals, package = "MASS")
brain <- Animals[c(1:24, 26:25, 27:28),]
data(hbk)
hbk.x <- data.matrix(hbk[, 1:3])

ctrl <- rrcov.control(alpha=0.75, trace=TRUE)
covMcd(hbk.x,      control = ctrl)
covMcd(log(brain), control = ctrl)
}
\keyword{robust}
\keyword{multivariate}