File: lmrob-data.Rout.save

package info (click to toggle)
robustbase 0.8-1-1-1
  • links: PTS
  • area: main
  • in suites: wheezy
  • size: 3,156 kB
  • sloc: fortran: 2,553; ansic: 2,419; makefile: 1
file content (344 lines) | stat: -rw-r--r-- 11,348 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344

R version 2.13.0 Under development (unstable) (2011-03-07 r54691)
Copyright (C) 2011 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
Platform: x86_64-unknown-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> ### lmrob()  with "real data"
> 
> library(robustbase)
> 
> set.seed(0)
> data(salinity)
> summary(m0.sali  <- lmrob(Y ~ . , data = salinity))

Call:
lmrob(formula = Y ~ ., data = salinity)

Weighted Residuals:
    Min      1Q  Median      3Q     Max 
-2.4326 -0.4018  0.1741  0.5272  5.8751 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 18.39327    4.01996   4.575 0.000122 ***
X1           0.71048    0.04938  14.388 2.68e-13 ***
X2          -0.17770    0.14762  -1.204 0.240397    
X3          -0.62733    0.15845  -3.959 0.000584 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Robust residual standard error: 1 
Convergence in 11 IRWLS iterations

Robustness weights: 
 observation 16 is an outlier with |weight| = 0 ( < 0.0036); 
 2 weights are ~= 1. The remaining 25 ones are summarized as
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
 0.5335  0.8269  0.9760  0.9112  0.9952  0.9989 
Algorithmic parameters: 
tuning.chi         bb tuning.psi refine.tol    rel.tol 
 1.5476400  0.5000000  4.6850610  0.0000001  0.0000001 
 nResample     max.it     groups    n.group   best.r.s   k.fast.s      k.max 
       500         50          5        400          2          1        200 
 trace.lev compute.rd  numpoints 
         0          0         10 
          psi        method           cov 
   "bisquare"          "MM" ".vcov.avar1" 
seed : int(0) 
> (A1 <- anova(m0.sali, Y ~ X1 + X3))
Robust Wald Test Table

Model 1: Y ~ X1 + X2 + X3
Model 2: Y ~ X1 + X3
Largest model fitted by lmrob(), i.e. SM

  pseudoDf Test.Stat Df Pr(>chisq)
1       24                        
2       25    1.4492  1     0.2287
> ## -> X2 is not needed
> (m1.sali  <- lmrob(Y ~ X1 + X3, data = salinity))

Call:
lmrob(formula = Y ~ X1 + X3, data = salinity)

Coefficients:
(Intercept)           X1           X3  
    15.8169       0.7210      -0.5415  

> (A2 <- anova(m0.sali, m1.sali)) # the same as before
Robust Wald Test Table

Model 1: Y ~ X1 + X2 + X3
Model 2: Y ~ X1 + X3
Largest model fitted by lmrob(), i.e. SM

  pseudoDf Test.Stat Df Pr(>chisq)
1       24                        
2       25    1.4492  1     0.2287
> stopifnot(all.equal(A1$Pr[2], A2$Pr[2], tol=1e-14))
> 
> anova(m0.sali, m1.sali, test = "Deviance")
Robust Deviance Table

Model 1: Y ~ X1 + X2 + X3
Model 2: Y ~ X1 + X3
Largest model fitted by lmrob(), i.e. SM

  pseudoDf Test.Stat Df Pr(>chisq)
1       24                        
2       25    1.9567  1     0.1619
> ## whereas 'X3' is highly significant:
> m2 <- update(m0.sali, ~ . -X3)
> (A3 <- anova(m0.sali, m2))
Robust Wald Test Table

Model 1: Y ~ X1 + X2 + X3
Model 2: Y ~ X1 + X2
Largest model fitted by lmrob(), i.e. SM

  pseudoDf Test.Stat Df Pr(>chisq)    
1       24                            
2       25    15.675  1  7.521e-05 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
> (A4 <- anova(m0.sali, m2, test = "Deviance"))
Robust Deviance Table

Model 1: Y ~ X1 + X2 + X3
Model 2: Y ~ X1 + X2
Largest model fitted by lmrob(), i.e. SM

  pseudoDf Test.Stat Df Pr(>chisq)    
1       24                            
2       25     19.65  1  9.302e-06 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
> cX3 <- c(Estimate = -0.627327396, `Std. Error` = 0.15844971,
+          `t value` = -3.9591577, `Pr(>|t|)` = 0.000584156)
> stopifnot(all.equal(cX3, coef(summary(m0.sali))["X3",], tol = 1e-6))
> 
> 
> ##  example(lmrob)
> set.seed(7)
> data(coleman)
> summary( m1 <- lmrob(Y ~ ., data=coleman) )

Call:
lmrob(formula = Y ~ ., data = coleman)

Weighted Residuals:
     Min       1Q   Median       3Q      Max 
-4.16181 -0.39226  0.01611  0.55619  7.22766 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 30.50232    6.71260   4.544 0.000459 ***
salaryP     -1.66615    0.43129  -3.863 0.001722 ** 
fatherWc     0.08425    0.01467   5.741 5.10e-05 ***
sstatus      0.66774    0.03385  19.726 1.30e-11 ***
teacherSc    1.16778    0.10983  10.632 4.35e-08 ***
motherLev   -4.13657    0.92084  -4.492 0.000507 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Robust residual standard error: 1.134 
Convergence in 11 IRWLS iterations

Robustness weights: 
 observation 18 is an outlier with |weight| = 0 ( < 0.005); 
 The remaining 19 ones are summarized as
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
 0.1491  0.9412  0.9847  0.9279  0.9947  0.9982 
Algorithmic parameters: 
tuning.chi         bb tuning.psi refine.tol    rel.tol 
 1.5476400  0.5000000  4.6850610  0.0000001  0.0000001 
 nResample     max.it     groups    n.group   best.r.s   k.fast.s      k.max 
       500         50          5        400          2          1        200 
 trace.lev compute.rd  numpoints 
         0          0         10 
          psi        method           cov 
   "bisquare"          "MM" ".vcov.avar1" 
seed : int(0) 
> stopifnot(c(3,18) == which(m1$w < 0.2))
> 
> data(starsCYG)
> (RlmST <- lmrob(log.light ~ log.Te, data = starsCYG))

Call:
lmrob(formula = log.light ~ log.Te, data = starsCYG)

Coefficients:
(Intercept)       log.Te  
     -4.969        2.253  

> summary(RlmST)

Call:
lmrob(formula = log.light ~ log.Te, data = starsCYG)

Weighted Residuals:
     Min       1Q   Median       3Q      Max 
-0.80959 -0.28838  0.00282  0.36668  3.39585 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)   
(Intercept)  -4.9694     3.4100  -1.457  0.15198   
log.Te        2.2532     0.7691   2.930  0.00531 **
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Robust residual standard error: 0.4715 
Convergence in 15 IRWLS iterations

Robustness weights: 
 4 observations c(11,20,30,34) are outliers with |weight| = 0 ( < 0.0021); 
 4 weights are ~= 1. The remaining 39 ones are summarized as
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
 0.6533  0.9171  0.9593  0.9318  0.9848  0.9986 
Algorithmic parameters: 
tuning.chi         bb tuning.psi refine.tol    rel.tol 
 1.5476400  0.5000000  4.6850610  0.0000001  0.0000001 
 nResample     max.it     groups    n.group   best.r.s   k.fast.s      k.max 
       500         50          5        400          2          1        200 
 trace.lev compute.rd  numpoints 
         0          0         10 
          psi        method           cov 
   "bisquare"          "MM" ".vcov.avar1" 
seed : int(0) 
> stopifnot(c(11,20,30,34) == which(RlmST$w < 0.01))
> 
> set.seed(47)
> data(hbk)
> m.hbk <- lmrob(Y ~ ., data = hbk)
> summary(m.hbk)

Call:
lmrob(formula = Y ~ ., data = hbk)

Weighted Residuals:
     Min       1Q   Median       3Q      Max 
-0.92731 -0.38663  0.05321  0.71800 10.80005 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)  
(Intercept) -0.18943    0.11665  -1.624   0.1088  
X1           0.08520    0.07316   1.165   0.2481  
X2           0.04099    0.02963   1.383   0.1709  
X3          -0.05367    0.03199  -1.678   0.0978 .
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Robust residual standard error: 0.7964 
Convergence in 9 IRWLS iterations

Robustness weights: 
 10 observations c(1,2,3,4,5,6,7,8,9,10)
	 are outliers with |weight| = 0 ( < 0.0013); 
 7 weights are ~= 1. The remaining 58 ones are summarized as
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
 0.8549  0.9281  0.9630  0.9540  0.9868  0.9987 
Algorithmic parameters: 
tuning.chi         bb tuning.psi refine.tol    rel.tol 
 1.5476400  0.5000000  4.6850610  0.0000001  0.0000001 
 nResample     max.it     groups    n.group   best.r.s   k.fast.s      k.max 
       500         50          5        400          2          1        200 
 trace.lev compute.rd  numpoints 
         0          0         10 
          psi        method           cov 
   "bisquare"          "MM" ".vcov.avar1" 
seed : int(0) 
> stopifnot(1:10 == which(m.hbk$w < 0.01))
> 
> data(heart)
> summary(mhrt <- lmrob(clength ~ ., data = heart))

Call:
lmrob(formula = clength ~ ., data = heart)

Weighted Residuals:
     Min       1Q   Median       3Q      Max 
-9.87865 -1.75398 -0.08874  0.81797  5.63933 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)  30.2921    62.7390   0.483    0.641
height       -0.1368     2.1287  -0.064    0.950
weight        0.3135     0.7360   0.426    0.680

Robust residual standard error: 2.591 
Convergence in 36 IRWLS iterations

Robustness weights: 
 3 weights are ~= 1. The remaining 9 ones are
     2      3      4      5      6      7      8      9     11 
0.9887 0.9301 0.9608 0.9082 0.9262 0.9963 0.1140 0.9666 0.6149 
Algorithmic parameters: 
tuning.chi         bb tuning.psi refine.tol    rel.tol 
 1.5476400  0.5000000  4.6850610  0.0000001  0.0000001 
 nResample     max.it     groups    n.group   best.r.s   k.fast.s      k.max 
       500         50          5        400          2          1        200 
 trace.lev compute.rd  numpoints 
         0          0         10 
          psi        method           cov 
   "bisquare"          "MM" ".vcov.avar1" 
seed : int(0) 
> stopifnot(8  == which(mhrt$w < 0.15),
+           11 == which(0.61 < mhrt$w & mhrt$w < 0.62),
+           c(1:7,9:10,12) == which(mhrt$w > 0.90))
> 
> data(stackloss)
> mSL <- lmrob(stack.loss ~ ., data = stackloss)
> summary(mSL)

Call:
lmrob(formula = stack.loss ~ ., data = stackloss)

Weighted Residuals:
      Min        1Q    Median        3Q       Max 
-10.50974  -1.43819  -0.09134   1.02503   7.23113 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) -41.52462    5.29780  -7.838 4.82e-07 ***
Air.Flow      0.93885    0.11743   7.995 3.68e-07 ***
Water.Temp    0.57955    0.26296   2.204   0.0416 *  
Acid.Conc.   -0.11292    0.06989  -1.616   0.1246    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Robust residual standard error: 1.912 
Convergence in 17 IRWLS iterations

Robustness weights: 
 observation 21 is an outlier with |weight| = 0 ( < 0.0048); 
 2 weights are ~= 1. The remaining 18 ones are summarized as
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
 0.1215  0.8757  0.9428  0.8721  0.9797  0.9978 
Algorithmic parameters: 
tuning.chi         bb tuning.psi refine.tol    rel.tol 
 1.5476400  0.5000000  4.6850610  0.0000001  0.0000001 
 nResample     max.it     groups    n.group   best.r.s   k.fast.s      k.max 
       500         50          5        400          2          1        200 
 trace.lev compute.rd  numpoints 
         0          0         10 
          psi        method           cov 
   "bisquare"          "MM" ".vcov.avar1" 
seed : int(0) 
> 
> 
> cat('Time elapsed: ', proc.time(),'\n') # "stats"
Time elapsed:  0.35 0.03 0.375 0 0 
>